Skip to main content
Log in

Systematic study of electronic properties of Fe-doped TiO2 nanoparticles by X-ray photoemission spectroscopy

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The importance of investigating the electronic structure of Fe doped TiO2 nanoparticles lies in understanding their various magnetic and optical applications. In this study Fe doped TiO2 nanoparticles were synthesized by sol–gel method in a wide range of Fe/Ti molar ratios (1, 3, 5, 8, and 10%) and post annealing at 400, 600 and 800 °C in air. The structure and size of nanoparticles were studied by X-ray diffraction and transmission electron microscopy, respectively. Systematic study of the existing states of Fe ions in Fe doped TiO2 and transformation of the existing states as a function of annealing temperature and Fe concentration were carried out utilizing high-resolution X-ray photoemission spectroscopy (XPS). The XPS results showed that Fe was present in all samples while Fe ions were detected in mixed valence (Fe2+ and Fe3+) states. The Fe3+ ions were dominant in the surface region of the nanoparticles. Moreover, the Ti in Fe:TiO2 nanoparticles was assigned to the Ti4+ while a small shift towards lower binding energies was observed upon increasing the annealing temperature and dopant level. This confirms the successful incorporation of Fe into TiO2, and the shifts in binding energies were attributed to the anatase to rutile transformation. The results verify that doping by Fe up to 10% do not exceed the limit of Fe substitutation into TiO2 lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C.E. McCold, Q. Fu, S. Hihath, J.M. Han, Y. Halfon, R. Faller, K. van Benthem, L. Zang, J. Hihath, Ligand exchange based molecular doping in 2D hybrid molecule-nanoparticle arrays: length determines exchange efficiency and conductance change. Mol. Syst. Des. Eng. 2, 440–448 (2017)

    Article  CAS  Google Scholar 

  2. B.M. Reddy, I. Ganesh, A. Khan, Stabilization of nanosized titania-anatase for high temperature catalytic applications. J. Mol. Catal. A 223, 295–304 (2004)

    Article  CAS  Google Scholar 

  3. W.Y. Choi, A. Termin, M.R. Hoffmann, The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. 84, 13669–13679 (1994)

    Article  Google Scholar 

  4. M. Yeganeh, N. Shahtahmasebi, A. Kompany, M. Karimipour, F. Razavi, N.H.S. Nasralla, L. Šiller, The magnetic characterization of Fe doped TiO2 semiconducting oxide nanoparticles synthesized by sol-gel method. Phys. B 511, 89–98 (2017)

    Article  CAS  Google Scholar 

  5. J.F. Zhu, W. Zheng, B. He, J.L. Zhang, M. Anpo, Characterization of Fe-TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water. J. Mol. Catal. A 216, 35–43 (2004)

    Article  CAS  Google Scholar 

  6. S. Liu, Y.C.X. Liu, R. Jiang, A novel preparation of highly active iron-doped titania photocatalysts with a p–n junction semiconductor structure. J. Alloys Compd. 506, 877–882 (2010)

    Article  CAS  Google Scholar 

  7. J. Zhu, F. Chen, J. Zhang, H. Chen, M. Anpo, Fe3+-TiO2 photocatalysts prepared by combining sol-gel method with hydrothermal treatment and their characterization. J. Photochem. Photobiol. A 180, 196–204 (2006)

    Article  CAS  Google Scholar 

  8. Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S.Y. Koshihara, H. Koinuma, Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science 291, 854–856 (2001)

    Article  CAS  Google Scholar 

  9. M. Crisan, M. Raileanu, N. Dragan, D. Crisan, A. Ianculescu, I. Nitoi, P. Oancea, S. Somacescu, N. Stanica, B. Vasile, C. Stan, Sol-gel iron-doped TiO2 nanopowders with photocatalytic activity. Appl. Catal. A 504, 130–142 (2015)

    Article  CAS  Google Scholar 

  10. J. Yan, G. Wu, N. Guan, L. Li, Z. Li, X. Cao, Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: anatase versus rutile. Phys. Chem. Chem. Phys. 15, 10978–10988 (2013)

    Article  CAS  Google Scholar 

  11. B. Santara, P.K. Giri, S. Dhara, K. Imakita, M. Fujii, Oxygen vacancy-mediated enhanced ferromagnetism in undoped and Fe-doped TiO2 nanoribbons. J. Phys. D 47, 235304 (2014)

    Article  Google Scholar 

  12. I. Ganesh, P.P. Kumar, A.K. Gupta, P.S.C. Sekhar, K. Radha, G. Padmanabham, G. Sundararajan, Preparation and characterization of Fe-doped TiO2 powders for solar light response and photocatalytic applications. Process. Appl. Ceram. 6, 21–36 (2012)

    Article  CAS  Google Scholar 

  13. S. Zhu, W. Liu, C. Fan, Y. Li, Mössbauer study of nano-TiO2 doped with Fe. Hyperfine Interact. 165, 273–278 (2005)

    Article  Google Scholar 

  14. S.K.S. Patel, S. Kurian, N.S. Gajbhiye, Room-temperature ferromagnetism of Fe-doped TiO2 nanoparticles driven by oxygen vacancy. Mater. Res. Bull. 48, 655–660 (2013)

    Article  CAS  Google Scholar 

  15. Q. Wu, Q. Zheng, R. Krol, Creating oxygen vacancies as a novel strategy to form tetrahedrally coordinated Ti4+ in Fe/TiO2 nanoparticles. J. Phys. Chem. C 116, 7219–7226 (2012)

    Article  CAS  Google Scholar 

  16. T. Ali, P. Tripathi, A. Azam, W. Raza, A.S. Ahmed, A. Ahmed, M. Muneer, Photocatalytic performance of Fe-doped TiO2 nanoparticles under visible-light irradiation. Mater. Res. Express 4, 015022 (2017)

    Article  Google Scholar 

  17. H. Moradi, A. Eshaghi, S.R. Hosseini, K. Ghani, Fabrication of Fe-doped TiO2 nanoparticles and investigation of photocatalytic decolorization of reactive red 198 under visible light irradiation. Ultrason. Sonochem. 32, 314–319 (2016)

    Article  CAS  Google Scholar 

  18. A.N. Mangham, N. Govind, M.E. Bowden, V. Shutthanandan, A.G. Joly, M.A. Henderson, S.A. Chambers, Photochemical properties, composition, and structure in molecular beam epitaxy grown Fe “doped” and (Fe,N) codoped rutile TiO2 (110). J. Phys. Chem. C 115, 15416–15424 (2011)

    Article  CAS  Google Scholar 

  19. N.D. Abazovic, L. Mirenghi, I.A. Jankovic, N. Bibic, D.V. Šojic, B.F. Abramovic, M. Comor, Synthesis and characterization of rutile TiO2 nanopowders doped with iron ions. Nanoscale Res. Lett. 4, 518–525 (2009)

    Article  CAS  Google Scholar 

  20. P. Esparza, T. Hernández, M.E. Borges, M.C. Álvarez-Galván, J.C. Ruiz-Morales, J.L.G. Fierro, TiO2 modifications by hydrothermal treatment and doping to improve its photocatalytic behaviour under visible light. Catal. Today 210, 135–141 (2013)

    Article  CAS  Google Scholar 

  21. L.Y. Zhu, X.T. Liu, W.W. Qin, X.S. Liu, N.N. Cai, X.Q. Wang, X.J. Lin, G.H. Zhang, D. Xu, Preparation, characterization and electronic structures of Fe-doped TiO2 nanostructured fibers. Mater. Res. Bull. 48, 2737–2745 (2013)

    Article  CAS  Google Scholar 

  22. A.B. Grosvenor, B.A. Kobe, M.C. Biesinger, N.S. Mclntyre, Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 36, 1564–1574 (2004)

    Article  CAS  Google Scholar 

  23. M. Mullet, V. Khare, C. Ruby, XPS study of Fe(II) Fe(III)(oxy) hydroxycarbonate green rust compounds. Surf. Interface Anal. 40, 323–328 (2008)

    Article  CAS  Google Scholar 

  24. Y. Wu, J. Zhang, L. Xiao, F. Chen, Properties of carbon and iron modified TiO2 photocatalyst synthesized at low temperature and photodegradation of acid orange 7 under visible light. Appl. Surf. Sci. 256, 4260–4268 (2010)

    Article  CAS  Google Scholar 

  25. J. Yu, Q. Xiang, M. Zhou, Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nonorods and first-principles study of electronic structures. Appl. Catal. B 90, 595–602 (2009)

    Article  CAS  Google Scholar 

  26. J. Zhang, X. Chen, Y. Shen, Y. Li, Z. Hu, J. Chu, Synthesis, surface morphology, and photoluminescence properties of anatase iron-doped titanium dioxide nano-crystalline films. Phys. Chem. Chem. Phys. 13, 13096–13105 (2011)

    Article  CAS  Google Scholar 

  27. E. McCafferty, J.P. Wightman, Determination of the concentration of surface hydroxyl groups on metal oxide films by a quantitative XPS method. Surf. Interface Anal. 26, 549–564 (1998)

    Article  CAS  Google Scholar 

  28. S. Doniach, M. Šunjic, Many-electron singularity in X-ray photoemission and X-ray line spectra from metals. J. Phys. C 3, 285 (1970)

    Article  CAS  Google Scholar 

  29. J. Di’az, G. Paolicelli, S. Ferrer, F. Comin, Separation of the sp3 and sp2 components in the C 1s photoemission spectra of amorphous carbon films. Phys. Rev. B 54, 8064 (1996)

    Article  Google Scholar 

  30. D.A. Shirley, High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys. Rev. B 5, 4709 (1972)

    Article  Google Scholar 

  31. Q. Fu, J. Chen, C. Shi, D. Ma, Room-temperature sol–gel derived molybdenum oxide thin films for efficient and stable solution-processed organic light-emitting diodes. ACS Appl. Mater. Interfaces 5(13), 6024–6029 (2013)

    Article  CAS  Google Scholar 

  32. J.F. Moudler, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corp, Eden Prairie, 1992)

    Google Scholar 

  33. J.T. Mayer, U. Diebold, T.E. Madey, E. Garfunkel, Titanium and reduced titania overlayers on titanium dioxide (110). J. Electron Spectrosc. Relat. Phenom. 73, 1–11 (1995)

    Article  CAS  Google Scholar 

  34. U. Diebold, The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53–229 (2003)

    Article  CAS  Google Scholar 

  35. D.A.H. Hanaor, I. Chironi, I. Karatchevtseva, G. Traini, C.C. Sorrell, Single and mixed phase TiO2 powders prepared by excess hydrolysis of titanium alkoxide. Adv. Appl. Ceram. 111, 149–158 (2012)

    Article  CAS  Google Scholar 

  36. E.A. Kozlova, T.P. Korobkina, A.V. Vorontsov, V.N. Parmon, Enhancement of the O2 or H2 photoproduction rate in a Ce3+/Ce4+-TiO2 system by the TiO2 surface and structure modification. Appl. Catal. A 367, 130–137 (2009)

    Article  CAS  Google Scholar 

  37. J.F. Porter, Y.G. Li, C.K. Chan, The effect of calcination on the microstructural characteristics and photoreactivity of Degussa P-25 TiO2. J. Mater. Sci. 34, 1535–1545 (1999)

    Article  Google Scholar 

  38. N.L. Wu, M.S. Lee, Z.J. Pon, J.Z. Hsu, Effect of calcination atmosphere on TiO2 photocatalysis in hydrogen production from methanol/water solution. J. Photochem. Photobiol. A 163, 277–280 (2004)

    Article  CAS  Google Scholar 

  39. P.R. Ettireddy, N. Ettireddy, S. Mamedov, P. Boolchand, P.G. Smirniotis, Surface characterization studies of TiO2 supported manganese oxide catalysts for low temperature SCR of NO with NH3. Appl. Catal. B 76, 123–134 (2007)

    Article  CAS  Google Scholar 

  40. X. Weimiao, C. Hui, Z. Xuanhui, H. Xianchao, L. Guohua, Preparation and photocatalytic activity of rutile TiO2 and goethite composite photocatalysts. Chin. J. Catal. 34, 1076–1086 (2013)

    Article  Google Scholar 

  41. J.T. Kloprogge, L.V. Duong, B.J. Wood, R.L. Frost, J. Colloid Interface Sci. 296, 572–576 (2006)

    Article  CAS  Google Scholar 

  42. F.F.H. Aragon, J.D. Ardisson, J.C.R. Aquino, I. Gonzalez, W.A.A. Macedo, J.A.H. Coaquira, J. Mantilla, S.W.D. Silva, P.C. Morais, Effect of the thickness reduction on the structural, surface and magnetic properties of α-Fe2O3 thin films. Thin Solid Films 607, 50–54 (2016)

    Article  CAS  Google Scholar 

  43. J.T. Carneiro, T.J. Savenije, J.A. Moulijn, G. Mul, Toward a physically sound structure—activity relationship of TiO2-based photocatalysts. J. Phys. Chem. C 114, 327–332 (2010)

    Article  CAS  Google Scholar 

  44. M. Hirano, T. Joji, M. Inagaki, H. Iwata, Direct formation of iron(III)-doped titanium oxide (anatase) by thermal hydrolysis and its structure property. J. Am. Ceram. Soc. 87, 35–41 (2004)

    Article  CAS  Google Scholar 

  45. J. Yu, M. Zhou, H. Yu, Q. Zhang, Y. Yu, Enhanced photoinduced super-hydrophilicity of the sol–gel-derived TiO2 thin films by Fe-doping. Mater. Chem. Phys. 95, 193–196 (2006)

    Article  CAS  Google Scholar 

  46. C.C. Yen, D.Y. Wang, L.S. Chang, H.C. Shih, Characterization and photocatalytic activity of Fe- and N-co-deposited TiO2 and first-principles study for electronic structure. J. Solid State Chem. 184, 2053–2060 (2011)

    Article  CAS  Google Scholar 

  47. M. Muhler, R. Schlogl, G. Ertl, The nature of the iron oxide-based catalyst for dehydrogenation of ethylbenzene to styrene 2. Surface chemistry of the active phase. J. Catal. 138, 413–444 (1992)

    Article  CAS  Google Scholar 

  48. N.N. Greenwood, A. Earnshaw, Chemistry of the Elements, 2nd edn. (Butterworth-Heinemann, Amsterdam, 1997)

    Google Scholar 

  49. V.E. Heinrich, P.A. Cox, The Surface Science of Metal Oxides (Cambridge University Press, Cambridge, 1994)

    Google Scholar 

  50. T. Tong, J. Zhang, B. Tian, F. Chen, D. He, Preparation of Fe3+-doped TiO2 catalysts by controlled hydrolysis of titanium alkoxide and study on their photocatalytic activity for methyl orange degradation. J. Hazard. Mater. 155, 572–579 (2008)

    Article  CAS  Google Scholar 

  51. H.W. Nesbitt, I.J. Muir, X-ray photoelectron spectroscopic study of a pristine pyrite surface reacted with water vapour and air. Geochim. Cosmochim. Acta 58, 4667–4679 (1994)

    Article  CAS  Google Scholar 

  52. T. Droubay, S.A. Chambers, Surface-sensitive Fe 2p photoemission spectra for α-Fe2O3(0001): the influence of symmetry and crystal-field strength. Phys. Rev. B 64, 205414 (2001)

    Article  Google Scholar 

  53. S. Hüfner, Photoelectron Spectroscopy: Principles and Applications (Springer, Berlin, 2003)

    Book  Google Scholar 

  54. J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4, 173–179 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mahboubeh Yeganeh or Lidija Šiller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasralla, N.H.S., Yeganeh, M., Astuti, Y. et al. Systematic study of electronic properties of Fe-doped TiO2 nanoparticles by X-ray photoemission spectroscopy. J Mater Sci: Mater Electron 29, 17956–17966 (2018). https://doi.org/10.1007/s10854-018-9911-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9911-5

Navigation