Skip to main content
Log in

Study of microstructure and magneto-transport properties in Bi1.6Pb0.4Sr2Ca3GdxCu4Oδ superconducting systems

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The role of Gd addition in the Bi1.6Pb0.4Sr2Ca3GdxCu4Oy (x = 0.0, 0.1, 0.2, 0.3 and 0.4) system was examined by X-ray powder diffraction, scanning electron microscopy, critical current density (Jc) and magneto-transport measurements. The samples were fabricated by the conventional solid state reaction method. The analysis showed that the critical temperature (Tc) and hole number (p) of the materials decreased while the room temperature resistances increased with the addition of Gd. The resistance–temperature dependence for the low-resistance regions of the transition can be determined by the thermally activated flux flow model. The upper critical field [Hc2(T)] values calculated by using this model decreased with the addition of Gd. Furthermore, it was observed that the activation energy (U0) decreased both with the increase in the amount of Gd and applied magnetic field. The degradation of the superconducting properties of the samples may be related to the alteration of the structural, electronic and magnetic properties of the materials depending on the presence of the Gd ions. As a result, the decrease in the number of holes and the magnetic properties of Gd ions are thought to be the fundamental reasons for the deterioration of the superconducting properties of the materials. It has been observed that Gd additions from the microstructure studies of the materials affected the surface morphology negatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, C.W. Chu, Phys. Rev. Lett. 58, 908–910 (1987)

    Article  CAS  Google Scholar 

  2. H. Maeda, Y. Tanaka, M. Fukutomi, T. Asano, Jpn. J. Appl. Phys. 27, 209 (1988)

    Article  Google Scholar 

  3. S.A. Sunshine, T. Siegrist, L.F. Schneemeyer, D.W. Murphy, R.J. Cava, B. Batlogg, R.B. Van Dover, R.M. Fleming, S.H. Glarum, S. Nakahara, R. Farrow, J.J. Krajevski, S.M. Zahurak, J.V. Waszczak, J.H. Marshall, P. Marsh, L.W. Rupp, W.F. Peck, Phys. Rev. B 38, 893 (1988)

    Article  CAS  Google Scholar 

  4. S.M. Green, C. Jiang, Y. Mei, H.L. Luo, C. Politis, Phys. Rev. B 38, 5016–5019 (1988)

    Article  CAS  Google Scholar 

  5. E. Chavira, R. Escudero, D. Rios-Jara, L.M. Leon, Phys. Rev. B 38, 9272–9275 (1988)

    Article  CAS  Google Scholar 

  6. N. Hudakova, V. Plechacek, P. Dordor, K. Flachbart, K. Knizek, J. Kovac, M. Reiffers, Supercond. Sci. Technol. 8, 324–328 (1995)

    Article  CAS  Google Scholar 

  7. L. Yanrong, B. Yang, J. Mater. Sci. Lett. 13, 594–596 (1994)

    Article  Google Scholar 

  8. M. Muralidhar, D. Mangapathi Rao, T. Somaiah, V. Hari Babu, Cryst. Res. Technol. 561, 561–565 (2006)

    Google Scholar 

  9. M.N. Khan, A. Memon, S. Al-Dallal, M. Al-Othman, M. Zein, W. Alnaser, Mod. Phys. Lett. B 7, 1687 (1993)

    Article  CAS  Google Scholar 

  10. W. Alnaser, M. Zein, M.N. Khan, S. AI-Dallal, A. Memon, M.J. AI-Othman, Supercond. Sci. Technol. 6, 429–436 (1993)

    Article  CAS  Google Scholar 

  11. M.N. Khan, A.U. Haq, J. Mater. Eng. Perform. 5, 446–451 (1996)

    Article  CAS  Google Scholar 

  12. M.N. Khan, A.N. Kayani, A.U. Haq, J. Mater. Sci. 33, 2365–2369 (1998)

    Article  CAS  Google Scholar 

  13. M. Daumling, R. Maad, A. Jeremie, R. Flukiger, J. Mater. Res. 12, 1445–1450 (1997)

    Article  CAS  Google Scholar 

  14. M. Muralidhar, K. Nanda Kishore, V. Hari Babu, Mater. Chem. Phys. 33, 117–123 (1993)

    Article  CAS  Google Scholar 

  15. B. Liang, C. Bernhard, T. Wolf, C.T. Lin, Supercond. Sci. Technol. 17, 731–738 (2004)

    Article  CAS  Google Scholar 

  16. J. Yoo, C. Jiang, J. Ko, Y. Kim, H. Kim, H. Chung, Evolution (N. Y). 13, 3014–3017 (2003)

    CAS  Google Scholar 

  17. I.H. Gul, M.A. Rehman, M. Ali, A. Maqsood, Phys. C Supercond. Appl. 432, 71–80 (2005)

    Article  CAS  Google Scholar 

  18. D. Yegen, C. Terzioglu, Chin. J. Phys. 44, 233–240 (2006)

    CAS  Google Scholar 

  19. C. Terzioglu, O. Oztürk, A. Kiliç, A. Gencer, I. Belenli, Phys. C Supercond. Appl. 434, 153–156 (2006)

    Article  CAS  Google Scholar 

  20. H. Gündoğmuş, J. Mater. Sci.: Mater. Electron. 28, 12598–12605 (2017)

    Google Scholar 

  21. Y. Himeda, M. Kiuchi, E.S. Otabe, T. Matsushita, J. Fujikami, K. Hayashi, K. Sato, Phys. C. 445–448, 722–725 (2006)

    Article  Google Scholar 

  22. F. Karaboğa, A.T. Ulgen, H. Yetiş, M. Akdoğan, M. Pakdil, I. Belenli, Mater. Sci. Eng. A. 721, 89–95 (2018)

    Article  Google Scholar 

  23. O. Erdem, M. Abdioglu, S.B. Guner, S. Celik, T. Kucukomeroglu, J. Alloys Compds. 727, 1213–1220 (2017)

    Article  CAS  Google Scholar 

  24. A.T. Ulgen, J. Baun, Inst. Sci. Technol. 19, 121–128 (2017)

    Google Scholar 

  25. S.B. Guner, S. Celik, A. Cansız, K. Ozturk, J. Supercond. Nov. Magn. 30, 1335–1343 (2017)

    Article  CAS  Google Scholar 

  26. C.P. Bean, Rev. Mod. Phys. 36, 31–39 (1964)

    Article  Google Scholar 

  27. M.R. Presland, J.L. Tallon, R.G. Buckley, R.S. Liu, N.E. Flower, Phys. C. 176, 95–105 (1991)

    Article  CAS  Google Scholar 

  28. C. Terzioglu, M. Yilmazlar, O. Ozturk, E. Yanmaz, Phys. C. 423, 119–126 (2005)

    Article  CAS  Google Scholar 

  29. S. Simon, G. Ilonca, I. Barbur, I. Ardelean, R. Redac, Phys. C Supercond. Appl. 162–164, 1289–1290 (1989)

    Article  Google Scholar 

  30. K. Nanda Kishore, S. Satyavathi, M. Muralidhar, V. Hari Babu, O. Pena, M. Sergent, F. Beniere, Phys. Status Solidi 143, 101–108 (1994)

    Article  Google Scholar 

  31. R.P. Aloysius, P. Guruswamy, U. Syamaprasad, Phys. C Supercond. Appl. 426–431, 556–562 (2005)

    Article  Google Scholar 

  32. J.H. Kim, S.X. Dou, D.Q. Shi, M. Rindfleisch, M. Tomsic, Supercond. Sci. Technol. 20, 1026–1031 (2007)

    Article  CAS  Google Scholar 

  33. H. Kitaguchi, A. Matsumoto, H. Hatakeyama, H. Kumakura, Supercond. Sci. Technol. 17, S486–S489 (2004)

    Article  CAS  Google Scholar 

  34. A. Coşkun, A. Ekicibil, B. Özçelik, K. Kıymaç, Chin. J. Phys. 21, 2041–2044 (2004)

    Google Scholar 

  35. B. Chevalier, B. Lepine, A. Le Lirzin, J. Darriet, J. Etourneau, Mater. Sci. Eng. B 2, 277–280 (1989)

    Article  Google Scholar 

  36. R.C. Budhani, D.O. Welch, M. Suenaga, R.L. Sabatini, Phys. Rev. Lett. 64, 1666–1669 (1990)

    Article  CAS  Google Scholar 

  37. B. Jayaram, P.C. Lanchester, M.T. Weller, Phys. C Supercond. Appl. 160, 17–24 (1989)

    Article  CAS  Google Scholar 

  38. C.S. Yadav, P.L. Paulose, New J. Phys. 11, 0–10 (2009)

    Article  Google Scholar 

  39. G.L. Bhalla, A. Pratima, K.K. Malik, Singh, Phys. C Supercond. Appl. 391, 17–24 (2003)

    Article  CAS  Google Scholar 

  40. G.B. Smith, J.M. Bell, S.W. Filipczuk, C. Andrikidis, Phys. C Supercond. Appl. 160, 333–340 (1989)

    Article  CAS  Google Scholar 

  41. M. Inui, P.B. Littlewood, S.N. Coppersmith, Phys. Rev. Lett. 63, 2421–2424 (1989)

    Article  CAS  Google Scholar 

  42. H.K. Liu, Y.C. Guo, S.X. Dou, S.M. Cassidy, L.F. Cohen, G.K. Perkins, A.D. Caplin, N. Savvides, Phys. C Supercond. Appl. 213, 95–102 (1993)

    Article  Google Scholar 

  43. I. Kušević, E. Babić, Z. Marohnić, J. Ivkov, S.X. Dou, Phys. C Supercond. Appl. 235–240, 3035–3036 (1994)

    Article  Google Scholar 

  44. B. Özkurt, B. Özçelik, J. Low Temp. Phys. 156, 22–29 (2009)

    Article  Google Scholar 

  45. N.V. Vo, H.K. Liu, S.X. Dou, Supercond. Sci. Technol. 9, 104–112 (1996)

    Article  CAS  Google Scholar 

  46. M.H. Pu, W.H. Song, B. Zhao, X.C. Wu, Y.P. Sun, J.J. Du, J. Fang, Phys. C Supercond. Appl. 361, 181–188 (2001)

    Article  CAS  Google Scholar 

  47. Z.H. Wang, H. Zhang, Phys. C Supercond. Appl. 320, 218–224 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Fund of Hakkari University, Hakkari, Turkey, under Grant Contract No: FM2017BAP5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ağıl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ağıl, H. Study of microstructure and magneto-transport properties in Bi1.6Pb0.4Sr2Ca3GdxCu4Oδ superconducting systems. J Mater Sci: Mater Electron 29, 16157–16165 (2018). https://doi.org/10.1007/s10854-018-9704-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9704-x

Navigation