Skip to main content
Log in

Temperature sensing behavior in Yb3+–Tb3+ and Eu3+ doped Ca2Gd8(SiO4)6O2 phosphors based on upconversion and downshifting luminescence

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

To develop new phosphor materials for optical temperature sensing application, a series of Yb3+–Tb3+ and Eu3+ doped Ca2Gd8(SiO4)6O2 (CGS) phosphors were designed by solid-state reaction method. Upon 980 nm excitation, the green emission of Tb3+ was observed in the CGS:0.8Yb3+, xTb3+ (0.08 ≤ x ≤ 1.2) phosphors, which could be mainly owing to the cooperative energy transfer from Yb3+ to Tb3+. The corresponding upconversion (UC) luminescence mechanism was studied by using the dependence of UC emission intensity on excitation powder. The temperature-dependence indicates that the ratio of the Tb3+ emission intensities of I5D4 and I5D3 changes with temperature, which shows a linear relationship. The high absolute sensitivity was achieved to be about 0.431 K−1. Upon 463 nm excitation, the Eu3+ 5D0,17FJ transitions were found in the Eu3+-activated CGS. The investigation on temperature-dependence reveals that with increasing temperature the intensities of 5D07FJ transitions decrease but those of 5D17FJ transitions increase gradually, owing to the thermally coupled 5D0 and 5D1 levels. The fluorescence lifetime based temperature sensing properties was studied in this sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Shi, X. Huang, T. Liu, L. Lin, C. Liu, Y. Huang, L. Zheng, L. Ning, H. Liang, Inorg. Chem. 57, 1116–1124 (2018)

    Article  Google Scholar 

  2. J. Zhang, X. Li, G. Chen, Mater. Chem. Phys. 206, 40–47 (2018)

    Article  Google Scholar 

  3. F. Enrichi, C. Armellini, G. Battaglin, F. Belluomo, S. Belmokhtar, A. Bouajaj, E. Cattaruzza, M. Ferrari, F. Gonella, A. Lukowiak, M. Mardegan, S. Polizzi, E. Pontoglio, G.C. Righini, C. Sada, E. Trave, L. Zur, Opt. Mater. 60, 264–269 (2016)

    Article  Google Scholar 

  4. X. Zhang, J. Xu, Z. Guo, M. Gong, Ind. Eng. Chem. Res. 56, 890–898 (2017)

    Article  Google Scholar 

  5. W. Tang, S. Wang, Z. Li, Y. Sun, L. Zheng, R. Zhang, B. Yang, W. Cao, M. Yu, Appl. Phys. Lett. 108, 061902 (2016)

    Article  Google Scholar 

  6. A. Pandey, V.K. Rai, Dalton Trans. 42, 11005–11011 (2013)

    Article  Google Scholar 

  7. Q. Min, W. Bian, Y. Qi, W. Lu, X. Yu, X. Xu, D. Zhou, J. Qiu, J. Alloys Compd. 728, 1037–1042 (2017)

    Article  Google Scholar 

  8. X. Wang, Y. Wang, Y. Bu, X. Yan, J. Wang, P. Cai, T. Vu, H.J. Seo, Sci. Rep. 7, 43383 (2017)

    Article  Google Scholar 

  9. H. Peng, M.I.J. Stich, J. Yu, L.-N. Sun, L.H. Fischer, O.S. Wolfbeis, Adv. Mater. 22, 716–719 (2010)

    Article  Google Scholar 

  10. L. Guo, Y. Wang, J. Zhang, Y. Wang, P. Dong, Nano. Res. Lett. 7, 636 (2012)

    Article  Google Scholar 

  11. J. Zhang, Y. Wang, Z. Xu, H. Zhang, P. Dong, L. Guo, F. Li, S. Xin, W. Zeng, J. Mater. Chem. B 1, 330–338 (2013)

    Article  Google Scholar 

  12. L.X. Sun, H. Gong, B.J. Chen, H. Lin, E.Y.B. Pun, J. Appl. Phys. 105, 106109 (2009)

    Article  Google Scholar 

  13. F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, X. Liu, Nat. Mater. 10, 968–973 (2011)

    Article  Google Scholar 

  14. B. Lai, J. Wang, Q. Su, Appl. Phys. B 98, 41–47 (2010)

    Article  Google Scholar 

  15. J. Zhang, Y. Wang, L. Guo, F. Zhang, Y. Wen, B. Liu, Y. Huang, J. Solid State Chem. 184, 2178–2183 (2011)

    Article  Google Scholar 

  16. F. Enrichi, C. Armellini, S. Belmokhtar, A. Bouajaj, A. Chiappini, M. Ferrari, A. Quandt, G.C. Righini, A. Vomiero, L. Zur, J. Lumin. 193, 44–50 (2018)

    Article  Google Scholar 

  17. J. Zhang, Y. Wang, Y. Wen, F. Zhang, B. Liu, J. Alloys Compd. 509, 4649–4652 (2011)

    Article  Google Scholar 

  18. M.A. Noginov, P. Venkateswarlu, M. Mahdi, J. Opt. Soc. Am. B 13, 735–741 (1996)

    Article  Google Scholar 

  19. N.M. Sangeetha, F.C.J.M. van Veggel, J. Phys. Chem. C 113, 14702–14707 (2009)

    Article  Google Scholar 

  20. X. Wang, J. Zheng, Y. Xuan, X. Yan, Opt. Express 21, 21596–21606 (2013)

    Article  Google Scholar 

  21. Y. Gao, F. Huang, H. Lin, J. Zhou, J. Xu, Y. Wang, Adv. Funct. Mater. 26, 3139–3145 (2016)

    Article  Google Scholar 

  22. S. Zhou, K. Deng, X. Wei, G. Jiang, C. Duan, Y. Chen, M. Yin, Opt. Commun. 291, 138–142 (2013)

    Article  Google Scholar 

  23. X. Wang, Q. Liu, Y. Bu, C.-S. Liu, T. Liu, X. Yan, RSC Adv. 5, 86219–86236 (2015)

    Article  Google Scholar 

  24. P. Du, L. Luo, X. Huang, J.S. Yu, J. Colloid Interf. Sci. 514, 172–181 (2018)

    Article  Google Scholar 

  25. L. Tong, X. Li, R. Hua, L. Cheng, J. Sun, J. Zhang, S. Xu, H. Zheng, Y. Zhang, B. Chen, Curr. Appl. Phys. 17, 999–1004 (2017)

    Article  Google Scholar 

  26. F. Zhang, W. Zhang, Z. Zhang, Y. Huang, Y. Tao, J. Lumin. 152, 160–164 (2014)

    Article  Google Scholar 

  27. Y. Tian, B. Tian, C. Cui, P. Huang, L. Wang, B. Chen, Opt. Lett. 39, 4164–4167 (2014)

    Article  Google Scholar 

  28. S. Zhang, Y. Hu, J. Lumin. 177, 394–401 (2016)

    Article  Google Scholar 

  29. F. Li, J. Cai, F. Chi, Y. Chen, C. Duan, M. Yin, Opt. Mater. 66, 447–452 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51602117) and the Foundation of Anhui College students Innovation and Entrepreneurship (No. 201610879047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J., Wei, H., Ji, X. et al. Temperature sensing behavior in Yb3+–Tb3+ and Eu3+ doped Ca2Gd8(SiO4)6O2 phosphors based on upconversion and downshifting luminescence. J Mater Sci: Mater Electron 29, 12061–12066 (2018). https://doi.org/10.1007/s10854-018-9312-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9312-9

Navigation