Skip to main content
Log in

Fabrication and properties of high B value [Mn1.56Co0.96Ni0.48O4]1−x[SrMnO3]x (0 ≤ x ≤ 0.5) spinel–perovskite composite NTC films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The [Mn1.56Co0.96Ni0.48O4]1−x[SrMnO3]x ((MCN)1−x(SM)x, 0 ≤ x ≤ 0.5) ceramic thin composite films were grown on SiO2/Si (100) substrates by the chemical solution deposition (CSD) method. The results of X-ray diffraction showed that the (MCN)1−x(SM)x (0 < x ≤ 0.5) films were a resemblance of the spinel–perovskite composite structure. The field emission scanning electron microscope analyses presented a considerable improvement in relative density with the increasing of the SM contents. In particular, the thermal constant of (MCN)1−x(SM)x ceramic film increased from 3289 to 5390 K with the increasing of the SM contents (x) from 0 to 0.5. This feature was attributed to the increase in the grain boundary resistance and the increase in Mn3+/Mn4+ pairs as the SM contents increased. From the spectroscopic ellipsometer spectroscopy results, it was found that the (MCN)0.5(SM)0.5 film had the biggest refractive index n value of 2.36 at 1.5 eV and a strong absorption peak at 4.0 eV. The sensitivity of MCN spinel ceramic film was enhanced by the compounding of SM. It was a significant disposition in the study of negative temperature coefficient thermistors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Altenburg, O. Mrooz, J. Plewa, O. Shpotyuk, M. Vakiv, Semiconductor ceramics for NTC thermistors: the reliability aspects. J. Eur. Ceram. Soc. 21(10–11), 1787–1791 (2001)

    Article  Google Scholar 

  2. A. Feteira, Negative temperature coefficient resistance (NTCR) ceramic thermistor: an industrial perspective. J. Am. Ceram. Soc. 92(5), 967 (2009)

    Article  Google Scholar 

  3. K. Park, J.K. Lee, The effect of ZnO content and sintering temperature on the electrical properties of Cu-containing Mn1.95–xNi0.45Co0.15Cu0.45ZnxO4, (0 ≤ x ≤ 0.3) NTC thermistors. J. Alloys Compd. 475(1–2), 513–517 (2009)

    Article  Google Scholar 

  4. R. Dannenberg, S. Baliga, R.J. Gambino, A.H. King, Resistivity, thermopower and the correlation to infrared active vibrations of Mn1.56Co0.96Ni0.48O4 spinel films sputtered in an oxygen partial pressure series. J. Appl. Phys. 86(1), 514–523 (1999)

    Article  Google Scholar 

  5. L. Yan, Y.D. Yang, Z.G. Wang, Z.P. Xing, J.F. Li, D. Viehland, Review of magnetoelectric perovskite–spinel self-assembled nano-composite thin films. J. Mater. Sci. 44(19), 5080–5094 (2009)

    Article  Google Scholar 

  6. J. Wu, Z.M. Huang, W. Zhou, C. Ouyang et al., Investigation of cation distribution, electrical, magnetic properties and their correlation in Mn2–xCo2xNi1–xO4 films. J. Appl. Phys. 115(11), 1377 (2014)

    Google Scholar 

  7. C. Ouyang, W. Zhou, J. Wu, Y. Hou, Uncooled bolometer based on Mn1.56Co0.96Ni0.48O4 thin films for infrared detection and thermal imaging. Appl. Phys. Lett. 105(2), 022105 (2014)

    Article  Google Scholar 

  8. W. Zhou, Y. Hou, Y.Q. Gao, L.B. Zhang, Z.M. Huang, Experimental study on the responsivity enhancement of Mn1.56Co0.96Ni0.48O4 detector under moderate bias field. SPIE 8193, 81934G (2011)

    Google Scholar 

  9. Y. Wang, X.M. Wu, W.Z. Zhang, C.Y. Luo, J.H. Li, Y.J. Wang, Fabrication of flower-like Ni0.5Co0.5(OH)2@PANI and its enhanced microwave absorption performances. Mater. Res. Bull. 98, 59–63 (2018)

    Article  Google Scholar 

  10. G.L. Wu, H.J. Wu, K.K. Wang, C.H. Zheng, Y.Q. Wang, A.L. Feng, Facile synthesis and application of multi-shelled SnO2 hollow spheres in lithium ion battery. RSC. Adv. 6(63), 58069–58076 (2016)

    Article  Google Scholar 

  11. Y.Q. Gao, Z.M. Huang, Y. Hou, W. Wu et al., Structural and electrical properties of Mn1.56Co0.96Ni0.48O4, NTC thermistor films. Mater. Sci. Eng. B 185(185), 74–78 (2014)

    Article  Google Scholar 

  12. Q. Shi, W. Ren, W.W. Kong, B. Gao et al., High B value Mn–Co–Ni spinel films on alumina substrate by RF sputtering. J. Mater. Sci. Mater. Electron. 28(13), 9876–9881 (2017)

    Article  Google Scholar 

  13. L. Yan, F.M. Bai, J.F. Li, D. Viehland, Nanobelt structure in perovskite–spinel composite thin films. J. Am. Ceram. Soc. 92(1), 17–20 (2010)

    Article  Google Scholar 

  14. C. Ma, W. Ren, L. Wang, J.B. Xu et al., Structural, optical, and electrical properties of (Mn1.56Co0.96Ni0.48O4)1–x(LaMnO3)x, composite thin films. J. Eur. Ceram. Soc. 36(16), 4059–4064 (2016)

    Article  Google Scholar 

  15. Q. Shi, S. Bao, W. Ren, X.B. Zhang et al., Structure, optical, and electrical properties of (Mn1.56Co0.96Ni0.48O4)1–x (LaMn0.6Al0.4O3)x composite thin films. Ceram. Int. 43(7), 5702–5707 (2017)

    Article  Google Scholar 

  16. F. Wang, Y.Q. Zhang, Y. Bai, H.R. Zhang et al., Oxygen vacancy formation, crystal structures, and magnetic properties of three SrMnO3-δ films. Appl. Phys. Lett. 109(5), 2618 (2016)

    Google Scholar 

  17. P.D. Battle, T.C. Gibb, C.W. Jones, The structural and magnetic properties of SrMnO3: a reinvestigation. J. Solid. State Chem. 74(1), 60–66 (1988)

    Article  Google Scholar 

  18. T. Saitoh, A.E. Bocquet, T. Mizokawa, H. Namatame et al., Electronic structure of La1–xSrxMnO3 studied by photoemission and X-ray-absorption spectroscopy. Phys. Rev. B 51(20), 13942–13951 (1995)

    Article  Google Scholar 

  19. A.E. Naciri, M. Mansour, L. Johann, J.J. Grob, C. Eckert, Optical study of Si nanocrystals in Si/SiO2 layers by spectroscopic ellipsometry. Nucl. Instrum. Methods Phys. Res. 216(1), 167–172 (2004)

    Article  Google Scholar 

  20. K. Kieschnick, H. Zimmermann, P. Seegebrecht, Silicon-based optical receivers in BiCMOS technology for advanced optoelectronic integrated circuits. Mater. Sci. Semicond. Process. 3(5), 395–398 (2000)

    Article  Google Scholar 

  21. S.S. More, R.H. Kadam, A.B. Kadam, D.R. Mane, G.K. Bichile, Structural properties and magnetic interactions in Al3+ and Cr3+ co-substituted CoFe2O4 ferrite. Cent. Eur. J. Chem. 8(2), 419–425 (2010)

    Google Scholar 

  22. A.L. Feng, G.L. Wu, C. Pan, Y.Q. Wang, The behavior of acid treating carbon fiber and the mechanical properties and thermal conductivity of phenolic resin matrix composites. J. Nanosci. Nanotechnol. 17(6), 3786–3791 (2017)

    Article  Google Scholar 

  23. C. Pan, J.Q. Zhang, K.C. Kou, Y. Zhang, G.L. Wu, Investigation of the through-plane thermal conductivity of polymer composites with in-plane oriented hexagonal boron nitride. Int. J. Heat Mass Transf. 120, 1–8 (2018)

    Article  Google Scholar 

  24. H.W. Nesbitt, D. Banerjee, Interpretation of XPS Mn (2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation. Am. Mineral. 83(3–4), 305–315 (1998)

    Article  Google Scholar 

  25. W. Wei, W. Chen, D.G. Ivey, Rock salt–spinel structural transformation in anodically electrodeposited Mn–Co–O nanocrystals. Chem. Mater. 20(5), 1941–1947 (2008)

    Article  Google Scholar 

  26. H.G. Wang, J.B. Xu, C. Ma, P.J. Zhao et al., Infrared optical properties of ferroelectric 0.5BaZr0.2Ti0.8O3–0.5Ba0.7Ca0.3TiO3, thin films. Ceram. Int. 41(1), 475–480 (2015)

    Article  Google Scholar 

  27. C.C. Shen, W.Y. Chou, H.L. Liu, Temperature dependence of optical properties of pentacene thin films probed by spectroscopic ellipsometry. Solid State Commun. 188(6), 1–4 (2014)

    Article  Google Scholar 

  28. R. Schmidt, A. Basu, A.W. Brinkman, Z. Klusek et al., An investigation into the surface topology and thickness profile of functional ceramic spinel manganate sputtered, evaporated and screen-printed layers. Appl. Surf. Sci. 252(24), 8760–8767 (2006)

    Article  Google Scholar 

  29. Y. Hou, Z.M. Huang, Y.Q. Gao, Y.J. Ge et al., Characterization of Mn1.56Co0.96Ni0.48O4, films for infrared detection. Appl. Phys. Lett. 92(20), 202115 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by West Light Foundation of the Chinese Academy of Sciences (No. 2015-XBQN-B-07) and by Young Elite Scientists Sponsorship Program by CAST (Grant No. 2016QNRC001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenwen Kong or Aimin Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Kong, W. & Chang, A. Fabrication and properties of high B value [Mn1.56Co0.96Ni0.48O4]1−x[SrMnO3]x (0 ≤ x ≤ 0.5) spinel–perovskite composite NTC films. J Mater Sci: Mater Electron 29, 9613–9620 (2018). https://doi.org/10.1007/s10854-018-8997-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8997-0

Navigation