Skip to main content
Log in

Facial-hydroxylated pure-phase BiFeO3 with controllable micro-morphology: performance as a highly efficient visible light photocatalyst

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The pure-phase BiFeO3 crystals with distinguished micro-morphologies were successfully prepared by a novel coprecipitation-hydrothermal collaborative synthesis method. Hydroxylation technique was innovatively employed to hydroxylate BiFeO3 samples. XPS and PL spectra proved that hydroxylation treatment indeed introduced more ·OH radicals on the surfaces of the BiFeO3 samples. Sample E (hydroxylated BiFeO3 ultra-thin slices) showed the highest photocatalytic activity. Hydroxylated BiFeO3 prepared in this work also showed high activities in water photo-oxidation reactions for producing oxygen gas. All hydroxylated samples showed notably enhanced photocatalytic activities due to the large specific surface areas, strong visible light responses, diminished recombination rates of the photo-excited carriers and excess ·OH radicals introduced by surface hydroxylation. All BiFeO3 samples showed good photochemical stabilities for reusage. This work provides valuable contributions in the future preparations and applications for BiFeO3 photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)

    Article  Google Scholar 

  2. Y.H. Hu, A highly efficient photocatalyst-hydrogenated black TiO2 for the photocatalytic splitting of water. Angew. Chem. Int. Ed. 51, 12410–12412 (2012)

    Article  Google Scholar 

  3. L. Ge, C. Han, J. Liu, Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange. Appl. Catal. B 108–109, 100–107 (2011)

    Article  Google Scholar 

  4. M.M. Gui, S.P. Chai, B.Q. Xu, A.R. Mohamed, Enhanced visible light responsive MWCNT/TiO2 core-shell nanocomposites as the potential photocatalyst for reduction of CO2 into methane. Sol. Energy Mater. Sol. Cells 122, 183–189 (2014)

    Article  Google Scholar 

  5. U.I. Gaya, A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: are view of fundamentals, progress and problems. J. Photochem. Photobiol. C 9, 1–12 (2008)

    Article  Google Scholar 

  6. F. Niu, D. Chen, L. Qin, T. Gao, N. Zhang, S. Wang, Z. Chen, J. Wang, X. Sun, Y. Huang, Synthesis of Pt/BiFeO3 heterostructured photocatalysts for highly efficient visible-light photocatalytic performances. Sol. Energy Mater. Sol. Cells 143, 386–396 (2015)

    Article  Google Scholar 

  7. Y. Liu, C.Y. Liu, J.H. Wei, R. Xiong, C.X. Pan, J. Shi, Enhanced adsorption and visible-light-induced photocatalytic activity of hydroxyapatite modified Ag–TiO2 powders. Appl. Surf. Sci. 256, 6390–6394 (2010)

    Article  Google Scholar 

  8. Y. Liu, Q. Yang, J.H. Wei, R. Xiong, C.X. Pan, J. Shi, Synthesis and photocatalytic activity of hydroxyapatite modified nitrogen-doped TiO2. Mater. Chem. Phys. 129, 654–659 (2011)

    Article  Google Scholar 

  9. Y. Liu, J.H. Wei, R. Xiong, C.X. Pan, J. Shi, Enhanced visible light photocatalytic properties of Fe-doped TiO2 nanorod clusters and monodispersed nanoparticles. Appl. Surf. Sci. 257, 8121–8126 (2011)

    Article  Google Scholar 

  10. C.M. Cho, J.H. Noh, I. Cho, J. An, K.S. Hong, Low-temperature hydrothermal synthesis of pure BiFeO3 nanopowders using triethanolamine and their applications as visible-light photocatalysts. J. Am. Ceram. Soc. 91, 3753–3755 (2008)

    Article  Google Scholar 

  11. T. Soltani, M.H. Entezari, Solar photocatalytic degradation of RB5 by ferrite bismuth nanoparticles synthesized via ultrasound. Ultrason. Sonochem. 20, 1245–1253 (2013)

    Article  Google Scholar 

  12. T. Soltani, M.H. Entezari, Sono-synthesis of bismuth ferrite nanoparticles with high photocatalytic activity. Chem. Eng. J. 223, 145–154 (2013)

    Article  Google Scholar 

  13. S. Li, Y. Lin, B. Zhang, J. Li, C.W. Nan, BiFeO3/TiO2 core-shell structured nanocomposites as visible-active photocatalysts and their optical response mechanism. J. Appl. Phys. 105, 054310 (2009)

    Article  Google Scholar 

  14. Z. Chen, Y. Wu, Y. Yang, J. Li, B. Xie, X. Li, S. Lei, J. Ou-Yang, X. Yanga, Q. Zhou, B.P. Zhu, Multilayered carbon nanotube yarn based optoacoustic transducer with high energy conversion efficiency for ultrasound application. Nano Energy 46, 314–321 (2018)

    Article  Google Scholar 

  15. D.J. Martin, G.G. Liu, D.S.J.A. Moniz, Y.P. Bi, A.M. Beale, J.H. Ye, J.W. Tang, Efficient visible driven photocatalyst, silver phosphate: performance, understanding and perspective. Chem. Soc. Rev. 44, 7808–7828 (2015)

    Article  Google Scholar 

  16. T. Shen, C. Hu, H.L. Dai, W.L. Yang, H.C. Liu, X.L. Wei, First principles study of structural, electronic and optical properties of BiFeO3 in ferroelectric and paraelectric phases. Mater. Res. Innov. 19, S5-684–S5-688 (2015)

    Article  Google Scholar 

  17. L. Hou, Z.Y. Lu, Y.C. Dai, K.H. Zuo, Y.F. Xia, Z.M. Ren, J. Wu, X.G. Lu, Y.P. Zeng, X. Li, Self-assembled growth of BiFeO3 meso-octahedral particles synthesized by a facile surfactant-free hydrothermal method. J. Crys. Growth 434, 42–46 (2016)

    Article  Google Scholar 

  18. L. Bi, A.R. Taussig, H. Kim, L. Wang, G.F. Dionne, D. Bono, K. Persson, G. Ceder, C.A. Ross, Structural, magnetic, and optical properties of BiFeO3 and Bi2FeMnO6 epitaxial thin films: an experimental and first-principles study. Phys. Rev. B 78, 1884–1898 (2008)

    Article  Google Scholar 

  19. S. Lam, J. Sin, A.R. Mohamed, A newly emerging visible light-responsive BiFeO3 perovskite for photocatalytic applications: a mini review. Mater. Res. Bull. 90, 15–30 (2017)

    Article  Google Scholar 

  20. J. Yin, G. Liao, J. Zhou, C. Huang, Y. Ling, P. Lu, L. Li, High performance of magnetic BiFeO3 nanoparticle-mediated photocatalytic ozonation for wastewater decontamination. Sep. Purif. Technol. 168, 134–140 (2016)

    Article  Google Scholar 

  21. Y. Sun, Y. Xia, Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176–2179 (2002)

    Article  Google Scholar 

  22. Z.L. Wang, J.H. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006)

    Article  Google Scholar 

  23. M.M. Rashad, Effect of synthesis conditions on the preparation of BiFeO3 nanopowders using two different methods. J. Mater. Sci.: Mater. Electron. 23, 882–888 (2012)

    Google Scholar 

  24. C.J. Tsai, C.Y. Yang, Y.C. Liao, Y.L. Chueh, Hydrothermally grown bismuth ferrites: controllable phases and morphologies in a mixed KOH/NaOH mineralizer. J. Mater. Chem. 22, 17432–17436 (2012)

    Article  Google Scholar 

  25. Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu, Z.G. Liu, Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering. Appl. Phys. Lett. 84, 1731–1733 (2004)

    Article  Google Scholar 

  26. M.M. Kumar, V.R. Palkar, K. Srinivas, S.V. Suryanarayana, Ferroelectricity in a pure BiFeO3 ceramic. Appl. Phys. Lett. 76, 2764–2766 (2000)

    Article  Google Scholar 

  27. A.K. Pradhan, K. Zhang, D. Hunter, J.B. Dadson, G.B. Loiutts, P. Bhattacharya, R. Katiyar, J. Zhang, D.J. Sellmyer, U.N. Roy, Y. Cui, A. Burger, Magnetic and electrical properties of single-phase multiferroic BiFeO3. J. Appl. Phys. 97, 093903 (2005)

    Article  Google Scholar 

  28. S.K. Singh, Y.K. Kim, H. Funakubo, H. Ishiwara, Epitaxial BiFeO3 thin films fabricated by chemical solution deposition. Appl. Phys. Lett. 88, 162904 (2006)

    Article  Google Scholar 

  29. D.C. Jia, J.H. Xu, H. Ke, W. Wang, Y. Zhou, Structure and multiferroic properties of BiFeO3 powders. J. Eur. Ceram. Soc. 29, 3099–3103 (2009)

    Article  Google Scholar 

  30. S.H. Xie, J.Y. Li, R. Porksch, Y.M. Liu, Y.C. Zhou, Y.Y. Liu, Y. Ou, L.N. Lan, Y. Qiao, Nanocrystalline multiferroic BiFeO3 ultrafine fibers by sol–gel based electro-spinning. Appl. Phys. Lett. 93, 222904 (2008)

    Article  Google Scholar 

  31. G.S. Arya, N.S. Negi, Effect of In and Mn co-doping on structural, magnetic and dielectric properties of BiFeO3 nanoparticles. J. Phys. D 46, 1–8 (2013)

    Article  Google Scholar 

  32. L. Zhai, Y.G. Shi, J.L. Gao, S.L. Tang, Y.W. Du, Ferroelectric and magnetic properties in high-pressure synthesized BiFeO3 compound. J. Alloys Compd. 509, 7591–7594 (2011)

    Article  Google Scholar 

  33. P. Yilmaz, D. Yeo, H. Chang, L. Loh, S. Dunn, Perovskite BiFeO3 thin film photocathode performance with visible light activity. Nanotechnology 27, 345402 (2016)

    Article  Google Scholar 

  34. J. Luo, P.A. Maggard, Hydrothermal synthesis and photocatalytic activities of SrTiO3-coated Fe2O3 and BiFeO3. Adv. Mater. 18, 514–517 (2006)

    Article  Google Scholar 

  35. J. Deng, S. Banerjee, S.K. Mohapatra, Y.R. Smith, M. Misra, Bismuth iron oxide nanoparticles as photocatalyst for solar hydrogen generation from water. J. Fundam. Renew. Energy Appl. 1, 1–10 (2011)

    Article  Google Scholar 

  36. S.A. Moniz, R. Quesada-Cabrera, C. Blackman, J. Tang, P. Southern, P. Weaver, C. Carmalt, A simple, low-cost CVD route to thin films of BiFeO3 for efficient water photo-oxidation. J. Mater. Chem. A 2, 2922–2927 (2014)

    Article  Google Scholar 

  37. B.P. Zhu, Y.H. Zhu, J. Yang, J. Ou-Yang, X.F. Yang, Y.X. Li, W. Wei, New potassium sodium niobate single crystal with thickness independent high-performance for photoacoustic angiography of atherosclerotic lesion. Sci. Rep. 6, 39679 (2016)

    Article  Google Scholar 

  38. J.G. Yu, Q.J. Xiang, M.H. Zhou, Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures. Appl. Catal. B 90, 595–602 (2009)

    Article  Google Scholar 

  39. J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corp, Eden Prairie, 1992)

    Google Scholar 

  40. C. Clementi, C. Miliani, G. Verri, S. Sotiropoulou, A. Romani, B.G. Brunetti, A. Sgamellotti, Application of the Kubelka-Munk correction for self-absorption of fluorescence emission in carmine lake paint layers. Appl. Spectrosc. 63, 1323–1329 (2009)

    Article  Google Scholar 

  41. Y. Cui, J. Briscoe, S. Dunn, Effect of ferroelectricity on solar-light-driven photocatalytic activity of BaTiO3-influence on the carrier separation and stern layer formation. Chem. Mater. 25, 4215–4223 (2013)

    Article  Google Scholar 

  42. S.J. Moniz, C. Blackman, P. Southern, P.M. Weaver, J. Tang, C.J. Carmalt, Visible-light driven water splitting over BiFeO3 photoanodes grown via the LPCVD reaction of [Bi(OtBu)3] and [Fe(OtBu)3]2 and enhanced with a surface nickel oxygen evolution catalyst. Nanoscale 7, 16343–16353 (2015)

    Article  Google Scholar 

  43. X.B. Chen, S.H. Shen, L.J. Guo, S.S. Mao, Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503–6570 (2010)

    Article  Google Scholar 

  44. S. Mohan, B. Subramanian, I. Bhaumik, P. Kumar Gupta, S.N. Jaisankar, Nanostructured Bi(1-x)Gd(x)FeO3- a multiferroic photocatalyst on its sunlight driven photocatalytic activity. RSC Adv. 4, 16871–16878 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Solar energy efficient application of Hubei province Collaborative Innovation Center open funding (Nos. HBSKFMS 2014017, 337188 and HBSKFQN20167004) and the National Natural Science Foundation of China (Nos. 11604089 and 11605050). The authors would like to acknowledge the technicians from Testing & Analysis Center of HBUT who helped us for sample characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Xu, G., Lv, H. et al. Facial-hydroxylated pure-phase BiFeO3 with controllable micro-morphology: performance as a highly efficient visible light photocatalyst. J Mater Sci: Mater Electron 29, 9117–9128 (2018). https://doi.org/10.1007/s10854-018-8939-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8939-x

Navigation