Skip to main content

Advertisement

Log in

Facile synthesis of BiFeO3 nanosheets with enhanced visible-light photocatalytic activity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Single-crystalline BiFeO3 nanosheets with rectangular shape and exposed {101} facets were successfully synthesized via a facile hydrothermal method with low reaction temperature and short time (130 °C for 14 h). The process has advantages of energy saving, template and surfactant free, and no additional equipment in required. The average side lengths of BiFeO3 nanosheets are around 140 and 230 nm, and thickness is about 30 nm. As a result, the BiFeO3 nanosheets photocatalyst reaches as high as 89% of photodegradation efficiency of rhodamine B under 180 min visible light irradiation, which is about 4.68 and 2.41 times that of BiFeO3 powders prepared by solid-state reaction and sol–gel process respectively. The BiFeO3 nanosheets photocatalyst also exhibits a high reusability and storage stability for the photodegradation reaction. The internal electric fields produced due to the ferroelectric nature are perpendicular to the surfaces of BiFeO3 nanosheets, which can promote the separation efficiency of photoinduced charges along [101] direction. While the nanoscale thickness structure can shorten the separation distance of photoinduced charges along [101] direction. These two factors all greatly suppress the recombination rate of e/h+ pairs, then leading to the improved photocatalytic kinetics of BiFeO3 nanosheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Marinas, A.M. Mayes, Nature 452, 301–310 (2008)

    Article  Google Scholar 

  2. X. Wang, S. Li, Y. Ma, H. Yu, J. Yu, J. Phys. Chem. C 30, 14648–14655 (2011)

    Article  Google Scholar 

  3. A. Fujishima, K. Honda, Nature 238, 37–38 (1972)

    Article  Google Scholar 

  4. H. Yang, C. Sun, S. Qiao, J. Zou, G. Liu, S.C. Smith, H. Cheng, G. Lu, Nature 453, 638–641 (2008)

    Article  Google Scholar 

  5. N. Wu, J. Wang, D.N. Tafen, H. Wang, J. Zheng, J.P. Lewis, X. Liu, S.S. Leonard, A. Manivannan, J. Am. Chem. Soc. 19, 6679–6685 (2010)

    Article  Google Scholar 

  6. Y. Yalcin, M. Kilic, Z. Cinar, Appl. Catal. B 99, 469–477 (2010)

    Article  Google Scholar 

  7. F. Gao, X. Chen, K. Yin, Adv. Mater. 19, 2889–2892 (2007)

    Article  Google Scholar 

  8. D. Wang, G. Xue, Y. Zhen, J. Mater. Chem. 22, 4751–4758 (2012)

    Article  Google Scholar 

  9. K. Zhao, L.Z. Zhang, J.J. Wang, Q.X. Li, W.W. He, J.J. Yin, J. Am. Chem. Soc. 135, 15750–15753 (2013)

    Article  Google Scholar 

  10. K. Villa, S. Murcia-Lopez, J. Ramon Morante, T. Andreu, Appl. Catal. B 187, 30–36 (2016)

    Article  Google Scholar 

  11. S. Thiyagarajan, S. Singh, D. Bahadur, Mater. Chem. Phys. 173, 385–394 (2016)

    Article  Google Scholar 

  12. Z. Chen, H. Jiang, W. Jin, C. Shi, Appl. Catal. B 180, 698–706 (2016)

    Article  Google Scholar 

  13. D.P. Dutta, O.D. Jayakumar, A.K. Tyagi, K.G. Girija, C.G.S. Pillai, G. Sharma, Nanoscale 2, 1149–1154 (2010)

    Article  Google Scholar 

  14. G. Catalan, J.F. Scott, Adv. Mater. 21, 2463–2485 (2009)

    Article  Google Scholar 

  15. T. Zhang, Y. Shen, Y.H. Qin, Y. Liu, R. Xiong, J. Shi, J.H. Wei, ACS Sustain. Chem. Eng. 5, 4630–4636 (2017)

    Article  Google Scholar 

  16. J. Kong, Z. Rui, X. Wang, H. Ji, Y. Tong, Chem. Eng. J. 302, 552–559 (2016)

    Article  Google Scholar 

  17. S. Li, J. Zhang, M. Kibria, Z. Mi, M. Chaker, D. Ma, R. Nechache, F. Rosei, Chem. Commun. 49, 5856–5858 (2013)

    Article  Google Scholar 

  18. X. Xu, Y. Lin, P. Li, L. Shu, C. Nan, J. Am. Ceram. Soc. 94, 2296–2299 (2011)

    Article  Google Scholar 

  19. Y. Huo, M. Miao, Y. Zhang, J. Zhu, H. Li, Chem. Commun. 47, 2089–2091 (2011)

    Article  Google Scholar 

  20. S.J. Chen, Y.C. Liu, C.L. Shao, R. Mu, Y.M. Lu, J.Y. Zhang, D.Z. .Shen, X.W. Fan, Adv. Mater. 17, 586–590 (2005)

    Article  Google Scholar 

  21. I.Y. Kim, Y.K. Jo, J.M. Lee, L. Wang, S.J. Hwang, J. Phys. Chem. Lett. 5, 4149–4161 (2014)

    Article  Google Scholar 

  22. L. Wang, T. Sasaki, Chem. Rev. 114, 9455–9486 (2014)

    Article  Google Scholar 

  23. L. Zhang, D.R. Chen, X.L. Jiao, J. Phys. Chem. B 110, 2668–2673 (2006)

    Article  Google Scholar 

  24. P. Niu, L.L. Zhang, G. Liu, H.M. Cheng, Adv. Funct. Mater. 22, 4763–4770 (2012)

    Article  Google Scholar 

  25. C. Zhou, Y.F. Zhao, L. Shang, R. Shi, L.Z. Wu, C.H. Tung, T. Zhang, Chem. Commun. 52, 8239–8242 (2016)

    Article  Google Scholar 

  26. C. Zhou, G. Chen, Y.X. Li, H.J. Zhang, J. Pei, Int. J. Hydrog. Energy 34, 2113–2120 (2009)

    Article  Google Scholar 

  27. J. Jiang, K. Zhao, X. Xiao, L. Zhang, J. Am. Chem. Soc. 134, 4473–4476 (2012)

    Article  Google Scholar 

  28. H. He, J. Yin, Y. Li, Y. Zhang, H. Qiu, J. Xu, T. Xu, C. Wang, Appl. Catal. B 156, 35–43 (2014)

    Article  Google Scholar 

  29. W. Zhao, Y. Jin, C.H. Gao, W. Gu, Z.M. Jin, Y.L. Lei, L.S. Liao, Mater. Chem. Phys. 143, 952–962 (2014)

    Article  Google Scholar 

  30. S. Li, Y. Lin, B. Zhang, Y. Wang, C. Nan, J. Phys. Chem. C 114, 2903–2908 (2010)

    Article  Google Scholar 

  31. X. Hu, G. Li, J.C. Yu, Langmuir 26, 3031–3039 (2010)

    Article  Google Scholar 

  32. H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Adv. Mater. 24, 229–251 (2012)

    Article  Google Scholar 

  33. M.M. Kumar, V.R. Palkar, K. Srinivas, S.V. Suryanarayana, Appl. Phys. Lett. 76, 2764–2766 (2000)

    Article  Google Scholar 

  34. S. Mohan, B. Subramanian, G. Sarveswaran, J. Mater. Chem. C 2, 6835–6842 (2014)

    Article  Google Scholar 

  35. S. Chaturvedi, R. Bag, V. Sathe, S. Kulkarni, S. Singh, J. Mater. Chem. C 4, 780–792 (2016)

    Article  Google Scholar 

  36. N. Das, R. Majumdar, A. Sen, H.S. Maiti, Mater. Lett. 61, 2100–2104 (2007)

    Article  Google Scholar 

  37. B. Liu, B. Hu, Z. Du, Chem. Commun. 47, 8166–8168 (2011)

    Article  Google Scholar 

  38. B. Sun, P. Han, W.X. Zhao, Y.H. Liu, P. Chen, J. Phys. Chem. C 118, 18814–18819 (2014)

    Article  Google Scholar 

  39. X.F. Wang, W.W. Mao, Q.X. Zhang, Q. Wang, Y.Y. Zhu, J. Zhang, T. Yang, J.P. Yang, X.A. Li, W. Huang, J. Alloys Compd. 677, 288–293 (2016)

    Article  Google Scholar 

  40. S. Li, R. Nechache, I.A.V. Davalos, G. Goupil, L. Nikolova, M. Nicklaus, J. Laverdiere, A. Ruediger, F. Rosei, J. Am. Ceram. Soc. 96, 3155–3162 (2013)

    Google Scholar 

  41. C.R. Peterson, E.B. Slamovich, J. Am. Ceram. Soc. 82, 1702–1710 (1999)

    Article  Google Scholar 

  42. L.F. Fei, J.K. Yuan, Y.M. Hu, C.Z. Wu, J.L. Wang, Y. Wang, Cryst. Growth Des. 11, 1049–1053 (2011)

    Article  Google Scholar 

  43. A. Jaiswal, R. Das, K. Vivekanand, P. Mary Abraham, S. Adyanthaya, P. Poddar, J. Phys. Chem. C 114, 2108–2115 (2010)

    Article  Google Scholar 

  44. A. Tamilselvan, S. Balakumar, M. Sakar, C. Nayek, P. Murugavel, K.K. Saravana, Dalton Trans. 43, 5731–5738 (2014)

    Article  Google Scholar 

  45. W. Eerenstein, F.D. Morrison, J. Dho, M.G. Blamire, J.F. Scott, N.D. Mathur, Science 307, 1203 (2005)

    Article  Google Scholar 

  46. J. Jiang, J. Zou, M.N. Anjum, J. Yan, L. Huang, Y. Zhang, J. Chen, Solid State Sci. 13, 1779–1785 (2011)

    Article  Google Scholar 

  47. X. Han, H. He, Q. Kuang, X. Zhou, X. Zhang, T. Xu, Z. Xie, L. Zheng, J. Phys. Chem. C 113, 584–589 (2009)

    Article  Google Scholar 

  48. U.A. Joshi, J.S. Jang, P.H. Borse, J.S. Lee, Appl. Phys. Lett. 92, 242106 (2008)

    Article  Google Scholar 

  49. F. Gu, S.F. Wang, M.K. Lü, G.J. Zhou, D. Xu, D.R. Yuan, J. Phys. Chem. B 108, 8119–8123 (2004)

    Article  Google Scholar 

  50. C. Hao, F. Wen, J. Xiang, H. Hou, W. Lv, Y. Lv, W. Hu, Z. Liu, Mater. Res. Bull. 50, 369–373 (2014)

    Article  Google Scholar 

  51. T.R. Paudel, W.R.L. Lambrecht, Phys. Rev. B 77, 205202 (2008)

    Article  Google Scholar 

  52. C. Chen, W. Ma, J. Zhao, Chem. Soc. Rev. 39, 4206 (2010)

    Article  Google Scholar 

  53. S. Lany, A. Zunger, Phys. Rev. Lett. 98, 045501 (2007)

    Article  Google Scholar 

  54. A. Travlos, N. Boukos, C. Chandrinou, H. Kwack, L.S. Dang, J. Appl. Phys. 106, 104307 (2009)

    Article  Google Scholar 

  55. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69–96 (1995)

    Article  Google Scholar 

  56. R. Pei, Z. Cheng, E. Wang, X. Yang, Biosens. Bioelectron. 16, 355–361 (2001)

    Article  Google Scholar 

  57. Y. Wang, F. Wang, J. He, Nanoscale 5, 11291 (2013)

    Article  Google Scholar 

  58. X. Bai, R. Zong, C. Li, D. Liu, Y. Liu, Y. Zhu, Appl. Catal. B 147, 82–91 (2014)

    Article  Google Scholar 

  59. E. Gutmann, A. Benke, K. Gerth, H. Böttcher, E. Mehner, C. Klein, U. Krause-Buchholz, U. Bergmann, W. Pompe, D.C. Meyer, J. Phys. Chem. C 116, 5383–5393 (2012)

    Article  Google Scholar 

  60. Y. Sun, B.S. Eller, R.J. Nemanich, J. Appl. Phys. 110, 084303 (2011)

    Article  Google Scholar 

  61. Q.B. Li, X. Zhao, J. Yang, C.J. Jia, Z. Jin, W.L. Fan, Nanoscale 7, 18971–18983 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

Financial supports from National Natural Science Foundation of China (No. 50702022), the Fundamental Research Funds for the Central Universities, SCUT (No. 2015ZZ012), Natural Science Foundation of Guangdong Province (No. 2014A030313245) and State Key Laboratory of Pulp and Paper Engineering (201624) are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Chen, Z., Zhong, C. et al. Facile synthesis of BiFeO3 nanosheets with enhanced visible-light photocatalytic activity. J Mater Sci: Mater Electron 29, 4817–4829 (2018). https://doi.org/10.1007/s10854-017-8437-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8437-6

Navigation