Skip to main content
Log in

Microstructural, magnetic and electrical properties of Zn0.4M0.3Co0.3Fe2O4 (M = Ni and Cu) ferrites synthesized by sol–gel method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A comparative study of microstructural, magnetic and electrical properties of Zn0.4Ni0.3Co0.3Fe2O4 (ZNCFO) and Zn0.4Cu0.3Co0.3Fe2O4 (ZCCFO) ferrites prepared using sol–gel method have been investigated in this work. X-ray diffraction results indicate that samples have cubic spinel type structure (\(Fd\bar {3}m\) space group). Lattice constant, average grain size and X-ray density are higher for ZCCFO than those of ZNCFO. The magnetic parameters such as M s , H c , and M r were found to decrease with the substitution of Ni by Cu. The electrical properties of the samples have been studied using impedance measurements as a function of frequency and temperature. The substitution of Zn–Co ferrite with Cu leads to improve its conductivity that its substitution with Ni. The behaviors of imaginary part of permittivity and loss tangent have been investigated using Maxwell–Wagner’s model and Koop’s theory. The electrical modulus study reveals the presence of the non-Debye type of dielectric relaxation in our samples. Close values of activation energy for dc conduction (E dc ) and for conductivity relaxation (E ) were found confirming that the relaxation process and electrical conductivity are attributed to the same defect. Nyquist representations (Z″ vs. Zʹ) were plotted and their characteristic behaviors were analyzed in terms of electrical equivalent circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. According to Funkecriterion, n ≤ 1 means that the electron hopping involves a translational motion with a sudden hopping, whereas n > 1 means that the motion involves localized hopping between neighbouring sites.

References

  1. M.T. Rahman, M. Vargas, C.V. Ramana, J. Alloys Compd. 617, 547 (2014)

    Article  Google Scholar 

  2. G. Mustafa, M.U. Islam, W. Zhang, Y. Jamil, A.W. Anwar, M. Hussain, M. Ahmad, J. Alloys Compd. 618, 428 (2015)

    Article  Google Scholar 

  3. E. Oumezzine, S. Hcini, M. Baazaoui, E.K. Hlil, M. Oumezzine, Powder Technol. 278, 189 (2015)

    Article  Google Scholar 

  4. A.S. Albuquerque, J.D. Ardisson, W.A.A. Macedo, M.C.M. Alves, J. Appl. Phys. 87, 4352 (2000)

    Article  Google Scholar 

  5. D. Markovec, M. Drofenik, A. Znidarsic, J. Am. Ceram. Soc. 82, 113 (1999)

    Google Scholar 

  6. R.K. Selvan, C.O. Augustin, L.J. Berchmans, R. Saraswathi, Mater. Res. Bull. 38, 41 (2003)

    Article  Google Scholar 

  7. G.F. Goya, H.R. Rechenberg, J. Appl. Phys. 84, 1101 (1998)

    Article  Google Scholar 

  8. F. Li, J.J. Liu, D.G. Evans, X. Duan, Chem. Mater. 16, 1597 (2004)

    Article  Google Scholar 

  9. C.T. Seip, E.E. Carpenter, C.J. O’Connor, J. Vijay, S. Li, IEEE Trans. Magn. 34, 1111 (1998)

    Article  Google Scholar 

  10. M. Idrees, M. Nadeem, M.M. Hassan, J. Phys. D. Appl. Phys. 43, 155401 (2010)

    Article  Google Scholar 

  11. R. Jemaï, R. Lahouli, S. Hcini, H. Rahmouni, K. Khirouni, J. Alloys Comp. 705, 340 (2017)

    Article  Google Scholar 

  12. A. Selmi, S. Hcini, H. Rahmouni, A. Omri, M.L. Bouazizi, A. Dhahri, Phase Transit. 90, 942 (2017)

    Article  Google Scholar 

  13. M.A. Rahman, A.K.M.A. Hossain, Phys. Scr. 89, 025803 (2014)

    Article  Google Scholar 

  14. N.M. Deraz, A. Alarifi., J. Anal. Appl. Pyrolysis. 94, 41 (2012)

    Article  Google Scholar 

  15. A.K.M.A. Hossain, H. Tabata, T. Kawai, J. Magn. Magn. Mater. 320, 1157 (2008)

    Article  Google Scholar 

  16. A. Manikandan, L.J. Kennedy, M. Bououdina, J.J. Vijaya, J. Magn. Magn. Mater. 349, 249 (2014)

    Article  Google Scholar 

  17. A.K.M.A. Hossain, K.K. Kabir, M. Seki, T. Kawai, H. Tabata, J. Phys. Chem. Solids. 68, 1933 (2007)

    Article  Google Scholar 

  18. G. Vaidyanathan, S. Sendhilnathan, R. Arulmurugan., J. Magn. Magn. Mater. 313, 293 (2007)

    Article  Google Scholar 

  19. K. Chandra Mouli, T. Joseph, K. Ramam, J. Nanosci. Nanotechnol. 9, 5596 (2009)

    Article  Google Scholar 

  20. M.H. Oza, G.J. Baldha, AIP Conf. Proc. 1728, 020228 (2016)

    Article  Google Scholar 

  21. M.H.R. Khan, A.K.M.A. Hossain. J. Magn. Magn. Mater. 391, 34 (2015)

    Article  Google Scholar 

  22. A. Iftikhar, M.U. Islam, M.S. Awan, M. Ahmad, S. Naseem, M.A. Iqbal, J. Alloy. Compd. 601, 116 (2014)

    Article  Google Scholar 

  23. R.D. Shannon, Acta Crystallogr. A. 32, 751 (1976)

    Article  Google Scholar 

  24. X. Tan, G. Li, Y. Zhao, C. Hu. Mater. Res. Bull. 44, 2160 (2009)

    Article  Google Scholar 

  25. M.A. Ahmed, S.F. Mansour, M. Afifi, J. Magn. Magn. Mater. 324, 4 (2012)

    Article  Google Scholar 

  26. D. Gherca, A. Pui, N. Cornei, A. Cojocariu, V. Nica, O. Caltun, J. Magn. Magn. Mater. 324, 3906 (2012)

    Article  Google Scholar 

  27. K.M. Batoo, M.S.A. El-sadek, J. Alloy. Compd. 566, 112 (2013)

    Article  Google Scholar 

  28. M.A. Ahmed, H.H. Afify, I.K. El Zawawia, A.A. Azab, J. Magn. Magn. Mater. 324, 2199 (2012)

    Article  Google Scholar 

  29. S.M. Hoque, M.A. Choudhury, M.F. Islam, J. Magn. Magn. Mater. 251, 292 (2002)

    Article  Google Scholar 

  30. H.M. Zaki, Phys. B. 407, 2025 (2012)

    Article  Google Scholar 

  31. E. Oumezzine, S. Hcini, E.K. Hlil, E. Dhahri, M. Oumezzine, J. Alloy. Compd. 615, 553 (2014)

    Article  Google Scholar 

  32. M. Houshiar, L. Jamilpanah, Mater. Res. Bull. 98, 213 (2018)

    Article  Google Scholar 

  33. A. Gholizadeh, E. Jafari, J. Magn. Magn. Mater. 422, 328 (2017)

    Article  Google Scholar 

  34. A. Manikandan, S.A. Antony, R. Sridhar, S. Ramakrishna, M. Bououdina, J. Nanosci. Nanotechnol. 15, 4948 (2015)

    Article  Google Scholar 

  35. A. Manikandan, J.J. Vijaya, L.J. Kennedy, M. Bououdina, J. Mol. Struct. 1035, 332 (2013)

    Article  Google Scholar 

  36. H.V. Kiran, A.L. Shashimohadn, D.K. Chajcrabarty, A.B. Biswas, Phys. Status Solidi (a). 66, 743 (1981)

    Article  Google Scholar 

  37. F. Kenfack, H. Langbein, J. Mater. Sci. 41, 3683 (2006)

    Article  Google Scholar 

  38. S. Anjum, A. Rashid, F. Bashir, S. Riaz, M. Pervaiz, R. Zia, ‎IEEE Trans. Magn. 50, 2200504 (2014)

    Google Scholar 

  39. S. Sharma, N.D. Sharma, N. Choudhary, M.K. Verma, D. Singh, Ceram. Int. 43, 13401 (2017)

    Article  Google Scholar 

  40. A.C.F.M. Costa, E. Tortella, M.R. Morelli, R.H.G.A. Kiminami, J. Magn. Magn. Mater. 256, 174v

  41. M.F. Al-Hilli, S. Li, K.S. Kassim, J. Magn. Magn. Mater. 324, 873 (2012)

    Article  Google Scholar 

  42. P.P. Hankare, U.B. Sankpal, R.P. Patil, A.V. Jadhav, K.M. Garadkar, B.K. Chougule, J. Magn. Magn. Mater. 323, 389 (2011)

    Article  Google Scholar 

  43. N. Ortega, A. Kumar, P. Bhattacharya, S.B. Majumder, R.S. Katiyar, Phys. Rev. B. 77, 014111 (2008)

    Article  Google Scholar 

  44. K. Funke, Prog. Solid State Chem. 22, 111 (1993)

    Article  Google Scholar 

  45. S.K. Mandal, S. Singh, P. Dey, J.N. Roy, P.R. Mandal, T.K. Nath, J. Alloys Compd. 656, 887 (2016)

    Article  Google Scholar 

  46. D.R. Patil, B.K. Chougule, Mater. Chem. Phys. 117, 35 (2009)

    Article  Google Scholar 

  47. S. Atiq, M. Majeed, A. Ahmad, S.K. Abbas, M. Saleem, S. Riaz, S. Naseem, J. Magn. Magn. Mater. 43, 2486 (2017)

    Google Scholar 

  48. S. Chakrabarty, M. Pal, A. Dutta, Mater. Chem. Phys. 153, 221 (2015)

    Article  Google Scholar 

  49. C.G. Koops, Phys. Rev. 83, 121 (1951)

    Article  Google Scholar 

  50. S. Verma, J. Chand, M. Singh, J. Magn. Magn. Mater. 324, 3252 (2012)

    Article  Google Scholar 

  51. A. Lakshman, P.S.V.S. Rao, B.P. Rao, K.H. Rao, J. Phys. D Appl. Phys. 38, 673 (2005)

    Article  Google Scholar 

  52. N.H. Vasoya, P.K. Jha, K.G. Saija, S.N. Dolia, K.B. Zankat, K.B. Modi. J. Electron. Mater. 45, 917 (2016)

    Article  Google Scholar 

  53. R. Bergman, J. Appl. Phys. 88, 1356 (2000)

    Article  Google Scholar 

  54. K.S. Rao, P.M. Krishna, D.M. Prasad, D. Gangadharudu, J. Mater. Sci. 42, 4801 (2007)

    Article  Google Scholar 

  55. N. Sivakumar, A. Narayanasamy, N. Ponpandian, G. Govindaraj, J. Appl. Phys. 101, 084116 (2007)

    Article  Google Scholar 

  56. N. Singh, A. Agarwal, S. Sanghi, Curr. Appl. Phys. 11, 783 (2011)

    Article  Google Scholar 

  57. Z. Ahmad, S. Atiq, S.K. Abbas, S.M. Ramay, S. Riaz, S. Naseem, Ceram. Int. 42, 18271 (2016)

    Article  Google Scholar 

  58. M.R. Syue, F.J. Wei, C.S. Chou, F. Chao-Ming, Thin Solid Films. 519, 8303 (2011)

    Article  Google Scholar 

  59. M. Hashim, S.S. Meena, R.K. Kotnala, S.E. Shirsath, A.S. Roy, A. Parveen, P. Bhatt, S. Kumar, R.B. Jotania, R. Kumar, Alimuddin, J. Alloys Compd. 602, 150 (2014)

    Article  Google Scholar 

  60. K.M. Batoo, Phys. B. 406, 382 (2011)

    Article  Google Scholar 

  61. M. Nadeem, M.J. Akhtar, A.Y. Khan, Solid State Commun. 134, 431 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deanship of Scientific Research at Sattam Bin Abdulaziz University under the research Project Number 2017/01/7373.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aref Omri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hcini, S., Omri, A., Boudard, M. et al. Microstructural, magnetic and electrical properties of Zn0.4M0.3Co0.3Fe2O4 (M = Ni and Cu) ferrites synthesized by sol–gel method. J Mater Sci: Mater Electron 29, 6879–6891 (2018). https://doi.org/10.1007/s10854-018-8674-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8674-3

Navigation