Skip to main content
Log in

Facile, one step synthesis of non-toxic kesterite Cu2ZnSnS4 nanoflakes thin film by chemical bath deposition for solar cell application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

An Author Correction to this article was published on 24 January 2018

This article has been updated

Abstract

Herein we report, synthesis of non-toxic kesterite Cu2ZnSnS4 (CZTS) nanoflakes thin film by facile, one-step and inexpensive chemical bath deposition method without any post deposition treatment. The kesterite structure of the as-grown CZTS thin film was confirmed by X-ray diffraction pattern (XRD) when compared with standard data (JCPDS #26–0575). In the Raman spectrum two principal peaks at 338 and 286 cm− 1 are clearly identified confirms the formation of kesterite structure of as-grown CZTS. The presence of all desired elements in the film was confirmed by energy dispersive X-ray spectroscopy (EDAX) analysis. Uniform growth of fine nanoflakes distributed over the entire surface of the substrate, oriented along (110) plane are reported here. The estimated crystallite size of the kesterite CZTS nanoflakes thin film was ~ 45 nm. Higher absorption in the visible region was observed in UV absorption spectrum with a band gap value of ~ 1.6 eV. I–V characteristic curve show straight line nature passing through the origin with high current for both in dark and under light illumination. The drastic increase in current after light illumination (150 W) was observed results in 88.5% photosensitivity. Furthermore, the heterojunction using CZTS as an absorber layer and ZnS as a window layer were fabricated on FTO coated glass substrate with ‘Glass Substrate/FTO/ZnS/CZTS/Ag’ device configuration which resulted in 1.71% efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 24 January 2018

    The original version of the article unfortunately contained an error in Fig. 8b. The current density (Jsc) is misspelled as 0.5 mA/cm2 instead of current density (Jsc) = 5.0 mA/cm2.

References

  1. M.I. Hoffert, K. Caldeira, A.K. Jain, E.F. Haites, L.D.D. Harvey, S.D. Potter, M.E. Schlesinger, S.H. Schneider, R.G. Watts, T.M.L. Wigley, D.J. Wuebbles, Energy implications of future stabilization of atmospheric CO2 content. Nature 395, 881–884 (1998)

    CAS  Google Scholar 

  2. S. Ahmed, K.B. Reuter, O. Gunawan, L. Guo, L.T. Romankiw, H. Deligianni, A high efficiency electrodeposited Cu2ZnSnS4 solar cell. Adv. Energy Mater. 2, 253–259 (2012)

    CAS  Google Scholar 

  3. F. Aslan, A. Tumbul, Non-vacuum processed Cu2ZnSnS4 thin films: influence of copper precursor on structural, optical and morphological properties. J. Alloys Compd. 612, 1–4 (2014)

    CAS  Google Scholar 

  4. P. Jackson, D. Hariskos, R. Wuerz, W. Wischmann, M. Powalla, Compositional investigation of potassium doped Cu(In,Ga)Se2 solar cells with efficiencies up to 20.8%. Phys. Status Solidi RRL 8, 219–222 (2014)

    CAS  Google Scholar 

  5. J.J. Scragg, P.J. Dale, L.M. Peter, G. Zoppi, I. Forbes, New routes to sustainable photovoltaics: evaluation of Cu2ZnSnS4 as an alternative absorber material. Phys. Status Solidi A 245, 1772–1778 (2008)

    CAS  Google Scholar 

  6. H. Deligianni, S. Ahmed, L.T. Romankiw, The next frontier: electrodeposition for solar cell fabrication. Electrochem. Soc. Interface 20, 47 (2011)

    CAS  Google Scholar 

  7. N.S. Lewis, D.G. Nocera, Powering the planet: chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 103, 15729–15735 (2006)

    CAS  Google Scholar 

  8. C. Wadia, A.P. Alivisatos, D.M. Kammen, Materials availability expands the opportunity for large-scale photovoltaics deployment. Environ. Sci. Technol. 43, 2072–2077 (2009)

    CAS  Google Scholar 

  9. K. Jimbo, R. Kimura, T. Kamimura, S. Yamada, W.S. Maw, H. Araki, K. Oishi, H. Katagiri, Cu2ZnSnS4-type thin film solar cells using abundant materials. Thin Solid Films 515, 5997–5999 (2007)

    CAS  Google Scholar 

  10. I. Kentaro, N. Tatsuo, Electrical and optical properties of stannite-type quaternary semiconductor thin films. Jpn. J. Appl. Phys. 27, 2094 (1988)

    Google Scholar 

  11. M.A. El-Sayed, Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Acc. Chem. Res. 37, 326–333 (2004)

    CAS  Google Scholar 

  12. A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, P.V. Kamat, Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. J. Am. Chem. Soc. 130, 4007–4015 (2008)

    CAS  Google Scholar 

  13. X. Zhang, G. Guo, C. Ji, K. Huang, C. Zha, Y. Wang, L. Shen, A. Gupta, N. Bao, Efficient thermolysis route to monodisperse Cu2ZnSnS4 nanocrystals with controlled shape and structure. Sci. Rep. 4, 5086 (2014)

    CAS  Google Scholar 

  14. Y. Xia, Y. Xiong, B. Lim, S.E. Skrabalak, Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed. 48, 60–103 (2009)

    CAS  Google Scholar 

  15. S. Schorr, Structural aspects of adamantine like multinary chalcogenides. Thin Solid Films 515, 5985–5991 (2007)

    CAS  Google Scholar 

  16. W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Device characteristics of cztsse thin-film solar cells with 12.6% efficiency. Adv. Energy Mater. 4, 1301456 (2014)

    Google Scholar 

  17. D. Yoo, M. Choi, S.C. Heo, D. Kim, C. Chung, C. Choi, RF-magnetron sputtered kesterite Cu2ZnSnS4 thin film using single quaternary sputtering target prepared by sintering process. J. Nanosci. Nanotechnol. 13, 7734–7740 (2013)

    CAS  Google Scholar 

  18. K. Oishi, G. Saito, K. Ebina, M. Nagahashi, K. Jimbo, W.S. Maw, H. Katagiri, M. Yamazaki, H. Araki, A. Takeuchi, Growth of Cu2ZnSnS4 thin films on Si (100) substrates by multisource evaporation. Thin Solid Films 517, 1449–1452 (2008)

    CAS  Google Scholar 

  19. M. Katsuhiko, T. Kunihiko, U. Hisao, Cu2ZnSnS4 Thin films annealed in H2S atmosphere for solar cell absorber prepared by pulsed laser deposition. Jpn. J. Appl. Phys. 47, 602 (2008)

    Google Scholar 

  20. H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, T. Yokota, Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of E-B evaporated precursors. Sol. Energy Mater. Sol. Cells 49, 407–414 (1997)

    CAS  Google Scholar 

  21. K. Hironori, I. Naoya, I. Takeshi, S. Kotoe, Characterization of Cu2ZnSnS4 thin films prepared by vapor phase sulfurization. Jpn. J. Appl. Phys. 40, 500 (2001)

    Google Scholar 

  22. Y.B.K. Kumar, G.S. Babu, P.U. Bhaskar, V. S. Raja, Preparation and characterization of spray-deposited Cu2ZnSnS4 thin films. Sol. Energy Mater. Sol. Cells 93, 1230–1237 (2009)

    Google Scholar 

  23. K. Tanaka, Y. Fukui, N. Moritake, H. Uchiki, Chemical composition dependence of morphological and optical properties of Cu2ZnSnS4 thin films deposited by sol–gel sulfurization and Cu2ZnSnS4 thin film solar cell efficiency. Sol. Energy Mater. Sol. Cells 95, 838–842 (2011)

    CAS  Google Scholar 

  24. J. Henry, K. Mohanraj, G. Sivakumar, Electrical and optical properties of CZTS thin films prepared by SILAR method. J. Asian Ceram. Soc. 4, 81–84 (2016)

    Google Scholar 

  25. S. Mahajan, D. Sygkridou, E. Stathatos, N. Huse, A. Kalarakis, R. Sharma, Enhancement in the efficiency of crystalline Cu2ZnSnS4 thin film solar cell by using various buffer layers. Superlattices Microstruct. 109, 240–248 (2017)

    CAS  Google Scholar 

  26. A.V. Kumar, N.-K. Park, E.-T. Kim, A simple chemical approach for the deposition of Cu2ZnSnS4 thin films. Phys. Status Solidi A 211, 1857–1859 (2014)

    CAS  Google Scholar 

  27. N.P. Huse, A.S. Dive, K.P. Gattu, R. Sharma One step synthesis of kestarite Cu2ZnSnS4 thin film by simple and economic chemical bath deposition method. AIP Conf. Proc. 1832, 080082 (2017)

    Google Scholar 

  28. M.-Y. Yeh, P.-H. Lei, S.-H. Lin, C.-D. Yang Copper-zinc-tin-sulfur thin film using spin-coating technology. Materials 9, 526 (2016)

    Google Scholar 

  29. N.P. Huse, A.S. Dive, K.P. Gattu, R. Sharma, An experimental and theoretical study on soft chemically grown CuS thin film for photosensor application. Mater. Sci. Semicond. Process. 67, 62–68 (2017)

    CAS  Google Scholar 

  30. G.K. Williamson, R.E. Smallman III, Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum. Philos. Mag.1, 34–46 (1956)

    CAS  Google Scholar 

  31. G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22–31 (1953)

    CAS  Google Scholar 

  32. M.M. Margoni, S. Mathuri, K. Ramamurthi, R.R. Babu, K. Sethuraman, Investigation on vanadium oxide thin films deposited by spray pyrolysis technique. AIP Conf. Proc. 1728, 020272 (2016)

    Google Scholar 

  33. A. Wangperawong, J.S. King, S.M. Herron, B.P. Tran, K. Pangan-Okimoto, S.F. Bent, Aqueous bath process for deposition of Cu2ZnSnS4 photovoltaic absorbers. Thin Solid Films 519, 2488–2492 (2011)

    CAS  Google Scholar 

  34. A.G. Kannan, T.E. Manjulavalli, J. Chandrasekaran, Influence of solvent on the properties of CZTS nanoparticles. Proc. Eng. 141, 15–22 (2016)

    CAS  Google Scholar 

  35. S. Chen, L.-W. Wang, A. Walsh, X.G. Gong, S.-H. Wei, Abundance of CuZn+SnZn and 2CuZn+SnZn defect clusters in kesterite solar cells. Appl. Phys. Lett. 101, 223901 (2012)

    Google Scholar 

  36. V. Kosyak, M.A. Karmarkar, M.A. Scarpulla, Temperature dependent conductivity of polycrystalline Cu2ZnSnS4 thin films. Appl. Phys. Lett. 100, 263903 (2012)

    Google Scholar 

  37. C.-H. Ruan, C.-C. Huang, Y.-J. Lin, G.-R. He, H.-C. Chang, Y.-H. Chen, Electrical properties of CuxZnySnS4 films with different Cu/Zn ratios. Thin Solid Films 550, 525–529 (2014)

    CAS  Google Scholar 

  38. S.S. Mali, B.M. Patil, C.A. Betty, P.N. Bhosale, Y.W. Oh, S.R. Jadkar, R.S. Devan, Y.-R. Ma, P.S. Patil, Novel synthesis of kesterite Cu2ZnSnS4 nanoflakes by successive ionic layer adsorption and reaction technique: characterization and application. Electrochim. Acta 66, 216–221 (2012)

    CAS  Google Scholar 

  39. K. Tanaka, M. Oonuki, N. Moritake, H. Uchiki, Thin film solar cells prepared by non-vacuum processing. Sol. Energy Mater. Sol. Cells 93, 583–587 (2009)

    CAS  Google Scholar 

  40. S.-N. Park, S.-J. Sung, J.-H. Sim, K.-J. Yang, D.-K. Hwang, J. Kim, G.Y. Kim, W. Jo, D.-H. Kim, J.-K. Kang, Nanostructured p-type CZTS thin films prepared by a facile solution process for 3D p-n junction solar cells. Nanoscale 7, 11182–11189 (2015)

    CAS  Google Scholar 

  41. N.P. Huse, D.S. Upadhye, S.V. Mahajan, S.B. Bagul, A.S. Dive, R. Sharma, Optical, electrical and morphological study of zns thin film synthesized by inexpensive chemical bath deposition technique. Bionano Front. 8, 192–194 (2015)

    Google Scholar 

  42. V.T. Tiong, J. Bell, H. Wang, One-step synthesis of high quality kesterite Cu2ZnSnS4 nanocrystals—a hydrothermal approach. Beilstein J. Nanotechnol. 5, 438–446 (2014)

    Google Scholar 

  43. S.A. Vanalakar, S.W. Shin, G.L. Agawane, M.P. Suryawanshi, K.V. Gurav, P.S. Patil, J.H. Kim, Effect of post-annealing atmosphere on the grain-size and surface morphological properties of pulsed laser deposited CZTS thin films. Ceram. Int. 40, 15097–15103 (2014)

    CAS  Google Scholar 

  44. N.P. Huse, D.S. Upadhyea, A.S. Dive, R. Sharma, Study of opto-electronic properties of copper sulphide thin film grown by chemical bath deposition technique for electronic device application. Invert. J. Renew. Energy 6, 74–78 (2016)

    Google Scholar 

  45. X. Lu, Z. Zhuang, Q. Peng, Y. Li, Wurtzite Cu2ZnSnS4 nanocrystals: a novel quaternary semiconductor. Chem. Commun. 47, 3141–3143 (2011)

    CAS  Google Scholar 

  46. Y. Li, Q. Han, T.W. Kim, W. Shi, Synthesis of wurtzite-zincblende Cu2ZnSnS4 and Cu2ZnSnSe4 nanocrystals: insight into the structural selection of quaternary and ternary compounds influenced by binary nuclei. Nanoscale 6, 3777–3785 (2014)

    CAS  Google Scholar 

  47. M. Li, W.-H. Zhou, J. Guo, Y.-L. Zhou, Z.-L. Hou, J. Jiao, Z.-J. Zhou, Z.-L. Du, S.-X. Wu, Synthesis of pure metastable wurtzite CZTS nanocrystals by facile one-pot method. J. Phys. Chem. C 116, 26507–26516 (2012)

    CAS  Google Scholar 

  48. N. Huse, D. Upadhye, R. Sharma, An economic approach to fabricate photo sensor based on nanostructured ZnO thin films. AIP Conf. Proc. 1728, 020410 (2016)

    Google Scholar 

  49. S.V. Mahajan, D.S. Upadhye, S.U. Shaikh, R.B. Birajadar, F.Y. Siddiqui, S.B. Bagul, N.P. Huse, R.B. Sharma, Enhancement of photo sensor properties of nanocrystalline ZnO thin film by swift heavy ion irradiation. AIP Conf. Proc. 1665, 080063 (2015)

    Google Scholar 

  50. I. Camps, J. Coutinho, M. Mir, A.F.d. Cunha, M.J. Rayson, P.R. Briddon, Elastic and optical properties of Cu2ZnSn(SexS1–x)4 alloys: density functional calculations. Semicond. Sci. Technol. 27, 115001 (2012)

    Google Scholar 

  51. M. Jiang, Y. Li, R. Dhakal, P. Thapaliya, M. Mastro, J.D. Caldwell, F. Kub, X. Yan, Cu2ZnSnS4 polycrystalline thin films with large densely packed grains prepared by sol–gel method. J. Photo Energy, 1, 019501–019506 (2011)

    Google Scholar 

  52. S.S. Mali, P.S. Shinde, C.A. Betty, P.N. Bhosale, Y.W. Oh, P.S. Patil, Synthesis and characterization of Cu2ZnSnS4 thin films by SILAR method. J. Phys. Chem. Solids 73, 735–740 (2012)

    CAS  Google Scholar 

Download references

Acknowledgements

One of the authors Mr. Nanasaheb Huse is thankful to the DST-SERB, Government of India for providing financial assistance through major research Project Ref. No.: SR/S2/CMP-0122-2012. I would like to extend my sincere gratitude towards Dr. Fouran Singh, Senior Scientist, IUAC, New Delhi for the support and characterization facilities. We are also thankful to Dr. Saif A. Khan and Dr. Indra Sulania, IUAC, New Delhi for providing FE-SEM with EDAX and AFM characterization facilities respectively. Authors are also thankful to the Head, Department of Physics and Department of Nanotechnology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad for providing necessary lab facilities to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramphal Sharma.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huse, N.P., Dive, A.S., Mahajan, S.V. et al. Facile, one step synthesis of non-toxic kesterite Cu2ZnSnS4 nanoflakes thin film by chemical bath deposition for solar cell application. J Mater Sci: Mater Electron 29, 5649–5658 (2018). https://doi.org/10.1007/s10854-018-8534-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8534-1

Navigation