Skip to main content

Advertisement

Log in

Lanthanum-modified lead zirconate titanate based paint for sensor and energy harvesting applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Multi-functional lanthanum modified lead zirconate titanate/paint (PLZT/paint) nanocomposite films on copper substrates were fabricated using a conventional brushing technique. Atomic force microscopy (AFM) was utilized to study surface morphology of the films to assess the surface roughness and dispersion of the PLZT nanoparticles in the paint matrix. Non-structural functions such as dielectric and energy harvesting properties have been studied. Results indicate an increase in dielectric constants (ε′, ε″) with increasing temperature and PLZT nanoparticle concentration in the paint matrix. The ac conductivity studies of the nanocomposites were in excellent agreement with the Jonscher law: \({\sigma _{ac}}={\sigma _{dc}}+~A{\omega ^s}\), where s is an exponent that decreased with an increase in temperature. The leading ac conduction mechanism in nanocomposite films was found to be correlated barrier hopping (C.B.H.). The activation energy of nanocomposite films was found to decrease with an increase in the concentration of PLZT nano-particles. The pyroelectric coefficient and figure of merits were enhanced with PLZT nanoparticle loading and increased temperature, making it an attractive candidate for a readily deployable pyroelectric sensor and potential thermal harvesting applications. The output voltage and power for a PLZT/paint harvester with a broad frequency response operating in the − 31-piezoelectric mode were 51.7 mV and 0.38 µW, respectively. Output voltage and power were increased with the application of thermal oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R. Rai, S. Mishra, N.K. Singh, J. Alloys Compd. 487, 494–498 (2009)

    Article  CAS  Google Scholar 

  2. R.V. Pai, T.V. Vittal Rao, A. Kumar. S.K. Mukherjee, V. Venugopal, J. Alloys Compd. 443, 166–170 (2007)

    Article  CAS  Google Scholar 

  3. W. Xia, B. Chen, L. Liu, Y. Yin, Z. Xu, J. Alloys Compd. 743, 314–322 (2018)

    Article  CAS  Google Scholar 

  4. M. Narayanan, B. Ma, U. Balachandran, Mater. Lett. 64, 22–24 (2010)

    Article  CAS  Google Scholar 

  5. A. Kumar, V.V. Bhanu Prasad, K.C. James Raju, A.R. James, J. Alloys Compd. 599, 53–59 (2014)

    Article  CAS  Google Scholar 

  6. A. Ma, S. Tong, M. Narayanan, S. Liu, S. Zhao, U. Balachandran, Mater. Res. Bull. 46, 1124–1129 (2011)

    Article  CAS  Google Scholar 

  7. A. Khodorov, M.J.M. Gomes, Vacuum 82, 1495–1498 (2008)

    Article  CAS  Google Scholar 

  8. N. Zhang, Y. Feng, Z. Xu, Mater. Lett. 65, 1611–1614 (2011)

    Article  CAS  Google Scholar 

  9. Z.H. Cui, G. Gregori, A.L. Ding, X.X. Guo, J. Maier, Solid State Ion. 208, 4–7 (2012)

    Article  CAS  Google Scholar 

  10. A.K. Garg, A.K. Tripathi, T.C. Goel, M.M.A. Sekar, C.N. Sukenik, Mater. Sci. Eng. B 87, 87–91 (2001)

    Article  Google Scholar 

  11. P. Li, W. Li, H. Zeng, S. Liu, W. Wang, J. Zhai, Ceram. Int. 41, 4479–4486 (2015)

    Article  CAS  Google Scholar 

  12. S. Tong, B. Ma, M. Narayanan, S. Liu, U. Balachandran, D. Shi, Mater. Lett. 106, 405–408 (2013)

    Article  CAS  Google Scholar 

  13. S. Sharma, R. Singh, T.C. Goel, S. Chandra, Comput. Mater. Sci. 37, 86–89 (2006)

    Article  CAS  Google Scholar 

  14. U. Balachandran, D.K. Kwon, M. Narayanan, B. Ma, J. Eur. Ceram. Soc. 30, 365–368 (2010)

    Article  CAS  Google Scholar 

  15. S. Chao, B. Ma, S. Liu, M. Narayanan, U. Balachandran, Mater. Res. Bull. 47, 907–911 (2012)

    Article  CAS  Google Scholar 

  16. A. Ma, D.K. Kwon, M. Narayanan, U. Balachandran, Mater. Lett. 62, 3573–3575 (2008)

    Article  CAS  Google Scholar 

  17. G.H. Haertling, J. Am. Ceram. Soc. 82, 797–818 (1999)

    Article  CAS  Google Scholar 

  18. A.B. Bohara, A.K. Batra, K.J. Arun, M.D. Aggarwal, C. Farley, Adv. Sci. Eng. Med. Vol 9, 1–6 (2017) III

    Article  CAS  Google Scholar 

  19. A. Batra, B. Bohara, J. Mills, R. Wright, B. Kenney, J. Mater. Sci. Mater. Electron. 28, 13336–13343 (2017). https://doi.org/10.1007/s10854-017-7170-5

    Article  CAS  Google Scholar 

  20. A.B. Bohara, A.K. Batra, Prog. Nat. Sci. 28, 1–6 (2018)

    Article  CAS  Google Scholar 

  21. M.E. Edwards, A.K. Batra, A.K. Chilvery, P. Guggilla, M. Curley, M.D. Aggarwal, Mater. Sci. Appl. 3, 851–855 (2012). https://doi.org/10.4236/msa.2012.312124

    Article  CAS  Google Scholar 

  22. S. Hajra, S. Sahoo, M. De, P.K. Rout, H.S. Tewari, R.N.P. Choudhary, J Mater Sci Mater Electron, https://doi.org/10.1007/s10854-017-8054-4

    Google Scholar 

  23. A. Batra, A. Alomari, M. Thomas, Br. J. Appl. Sci. Technol. 7, 213 (2015)

    Article  CAS  Google Scholar 

  24. P. Sharma, S. Hajra, S. Sahoo, P.K. Rout, R.N.P. Chaudhary, Process. Appl. Ceram. 11, 171–176 (2017)

    Article  Google Scholar 

  25. A. Jain, K.J. Prashanth, A.K. Sharma, A. Jain, P.N. Rashmi, Polym. Eng. Sci. 55, 1589–1616 (2015). https://doi.org/10.1002/pen.24088

    Article  CAS  Google Scholar 

  26. A.K. Batra, M.E. Edwards, A. Alomari, A. Elkhaldy, Am. J. Mat. Sci. 5, 55–61 (2015)

    Google Scholar 

  27. J. Kumar, S.N. Chaudhary, K. Prasad, R.N.P. Chaudhary, Adv. Mat. Lett. 5, 314–322 (2014)

    Google Scholar 

  28. S. Das, A.K. Biswal, K. Parida, R.N.P. Chaudhary, Appl. Surf. Sci. 428, 356–363 (2018)

    Article  CAS  Google Scholar 

  29. P. Gupta, R. Padhee, P.K. Mahapatra, R.N.P. Chaudhary, J. Mater. Sci. Mater. Electron. 28, 17344–17353 (2017)

    Article  CAS  Google Scholar 

  30. N. Vijayakumar, E. Subramanian, P.D. Pathinettam, J. Macromol. Sci., B: Physics 51, 1617–1636 (2012)

    Article  CAS  Google Scholar 

  31. A.C. Sutar, B. Pati, B.N. Parida, R. Piyush, R.N.P. Das, Choudhary, J. Mater. Sci. Mater. Electron. 24, 2043–2051 (2013). https://doi.org/10.1007/s10854-012-1054-5

    Article  CAS  Google Scholar 

  32. R.N.P. Chaudhary, S. Dutta, A.K. Thakur, P.K. Sinha, Ferroelectrics 306, 55–69 (2004)

    Article  Google Scholar 

  33. A.K. Batra, M.D. Aggarwal, P. Materials, Infrared Detectors, Particle Accelerators, and Energy Harvesters, 1st edn. (SPIE, Washington, 2013), pp. 11–13

    Book  Google Scholar 

  34. K.K. Bajpai, K. Sreenivas, A.K. Gupta, A.K. Shukla, Ceram. Int. 44, 14698–14703 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support for this work through the National Science Foundation Grant # RISE-HRD 1546965 and NSF (ASSURE) HBCU-UP grants. Special thanks to Drs. Chance M. Glenn and M. D. Aggarwal for their support in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok K. Batra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bohara, B.B., Batra, A.K. & Bowen, C.R. Lanthanum-modified lead zirconate titanate based paint for sensor and energy harvesting applications. J Mater Sci: Mater Electron 29, 20931–20941 (2018). https://doi.org/10.1007/s10854-018-0237-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0237-0

Navigation