Skip to main content
Log in

Effect of processing conditions on the electrical resistance of MWCNT/epoxy nanocomposite based strain sensors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper presents fabrication methods for some Multi Walled Carbon Nano Tube (MWCNT)/epoxy composites. These nanocomposite are characterized with respect to temperature and strain. The effect of parameters such as sonication time, percolation threshold, film thickness, use of substrate and formation of electric contact have been observed. These nanocomposites are fabricated: (i) with mould without substrate, (ii) without mould on poly ethylene terephthalate substrate, (iii) without mould without substrate and (iv) without mould without substrate with embedded electrode wire. Field Emission Scanning Electron Microscope of these samples is done to measure the dispersion and agglomerates formation of CNT bundles into polymer matrices. Piezoresistive characterization of these samples with respect to temperature and strain is performed. This paper gives a novel strategy for fabricating a highly sensitive MWCNT/epoxy strain sensor with excellent repeatability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P. Gaudenzi Smart structures: physical behaviour, mathematical modelling and applications. (John Wiley & Sons, Hoboken, 2009)

    Book  Google Scholar 

  2. V.K. Wadhawan, Resonance 10, 27 (2005)

    Article  Google Scholar 

  3. S. Kamila, Am. J. Appl. Sci. 10, 876 (2013)

    Article  Google Scholar 

  4. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical properties of carbon nanotubes. (World Scientific, Singapore, 1998)

    Book  Google Scholar 

  5. I. Kang, Y.Y. Heung, J.H. Kim et al., Compos. Part B Eng. 37, 382 (2006)

    Article  Google Scholar 

  6. M.F. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, science 339, 535 (2013)

    Article  Google Scholar 

  7. I. Kang, M.J. Schulz, J.H. Kim, V. Shanov, D. Shi, Smart Mater. Struct. 15, 737 (2006)

    Article  CAS  Google Scholar 

  8. L. Cai, C. Wang, Nanoscale Res Lett 10, 320 (2015)

    Article  Google Scholar 

  9. H. Rajoria, N. Jalili, (2005) Compos. Sci. Technol. 65, 2079

    Article  CAS  Google Scholar 

  10. P.M. Ajayan, O.Z. Zhou, Carbon nanotubes. (Springer, Berlin, 2001)

    Google Scholar 

  11. W. Obitayo, T. Liu, J. Sens. 2012, 15 (2012)

    Article  Google Scholar 

  12. N. Hu, H. Fukunaga, S. Atobe, Y. Liu, J. Li, Sensors 11, 10691 (2011)

    Article  Google Scholar 

  13. C. Hierold, A. Jungen, C. Stampfer, T. Helbling, Sens. Actuat. A Phys. 136, 51 (2007)

    Article  CAS  Google Scholar 

  14. M. Park, H. Kim, J.P. Youngblood, Nanotechnology 19, 055705 (2008)

    Article  Google Scholar 

  15. C. Kanoun, A. Müller, Benchirouf et al., Sensors 14, 10042 (2014)

    Article  CAS  Google Scholar 

  16. X. Yang, Z. Zhou, Y. Wu et al., Indian J. Pure Appl. Sci. 45, 282 (2007)

    CAS  Google Scholar 

  17. N. Hu, Y. Karube, M. Arai et al., Carbon 48, 680 (2010)

    Article  CAS  Google Scholar 

  18. M.H. Wichmann, S.T. Buschhorn, L. Böger, R. Adelung, K. Schulte, Nanotechnology 19, 475503 (2008)

    Article  Google Scholar 

  19. Z. Wang, X. Ye, Nanotechnology 24, 265704 (2013)

    Article  Google Scholar 

  20. B.M. Lee, K.J. Loh, Nanotechnology 28, 155502 (2017)

    Article  Google Scholar 

  21. A. Bouhamed, O. Kanoun, N.T. Dinh, Mechatronic systems: theory and applications (Springer, Berlin, 2014)

    Google Scholar 

  22. S. Masahito, Y. Kashiwagi, Y. Li et al., Nanotechnology 22, 085302 (2011)

    Article  Google Scholar 

  23. N. Hu, Y. Karube, C. Yan, Z. Masuda, H. Fukunaga, Acta Mater. 56, 2929 (2008)

    Article  CAS  Google Scholar 

  24. J.G. Simmons, J. Appl. Phys. 34, 1793 (1963)

    Article  Google Scholar 

  25. M.K. Njuguna, Characterisation of multi wall carbon nanotube–polymer composites for strain sensing applications (Doctoral dissertation, Queensland University of Technology, 2012)

  26. J. Hwang, J. Jang, K. Hong et al., Carbon 49, 106 (2011)

    Article  CAS  Google Scholar 

  27. K.-P. Yoo, L.-T. Lim, N.-K. Min, M.J. Lee, C.J. Lee, C.-W. Park, Sens. Actuat. B 145, 120 (2010)

    Article  CAS  Google Scholar 

  28. Q. Li, Q. Xue, X. Gao, Q. Zheng, Express Polym. Lett. 3, 769 (2009)

    Article  CAS  Google Scholar 

  29. F. Michelis, L. Bodelot, Y. Bonnassieux, B. Lebental, Carbon 95, 1020 (2015)

    Article  CAS  Google Scholar 

  30. M. Mohiuddin, Effect of pressure and temperature on electrical conductivity of CNT-PEEK composites (Doctoral dissertation, Concordia University, 2012)

  31. N. Hu, Z. Masuda, G. Yamamoto, H. Fukunaga, T. Hashida, J. Qiu, Compos. Part A Appl. Sci. Manuf. 39, 893 (2008)

    Article  Google Scholar 

  32. X. Zeng, X. Xu, P.M. Shenai et al., J. Phys. Chem. C 115, 21685 (2011)

    Article  CAS  Google Scholar 

  33. Y.S. Song, J.R. Youn, Carbon 43, 1378 (2005)

    Article  CAS  Google Scholar 

  34. B.D. Gates, Q. Xu, M. Stewart, D. Ryan, C.G. Willson, G.M. Whitesides, Chem. Rev. 105, 1171 (2005)

    Article  CAS  Google Scholar 

  35. J.J. Contreras-Navarrete, J.M. Ambriz-Torres, C.J. Gutiérrez-García et al., J. Mater. Sci. Mater. Electron. 29, 15776 (2018)

    Article  CAS  Google Scholar 

  36. H. Khosravi, R. Eslami-Farsani, J. Reinf. Plast. Compos. 35, 421 (2016)

    Article  CAS  Google Scholar 

  37. Z. Wang, G.-L. Zhao, J. Mater. Chem. C 2, 9406 (2014)

    Article  CAS  Google Scholar 

  38. Y. Su, Y. Gu, S. Feng, J. Mater. Sci.: Mater. Electron. 29, 2416 (2018)

    CAS  Google Scholar 

  39. A. Kumar, K. Kumar, P. Ghosh, K. Yadav, Ultrasonics sonochem. 41, 37 (2018)

    Article  CAS  Google Scholar 

  40. V.A.D. Silva, M.C. Rezende, Mater. Res. (2018). https://doi.org/10.1590/1980-5373-mr-2017-0977

    Article  Google Scholar 

  41. Z. Wang, Z. Guang-Lin, Open J. Compos. Mater. 3, 17 (2013)

    Article  Google Scholar 

  42. A. Li, W. Li, Y. Ling, W. Gan, M.A. Brady, C. Wang, RSC Adv. 6, 23318 (2016)

    Article  CAS  Google Scholar 

  43. B.S. Hadavand, K.M. Javid, M. Gharagozlou, Mater. Des. 50, 62 (2013)

    Article  Google Scholar 

  44. N. Roozban, S. Abbasi, M. Ghazizadeh, J. Mater. Sci. Mater. Electron. 28, 7343 (2017)

    Article  CAS  Google Scholar 

  45. S. Jagtap, D. Ratna, Express Polym. Lett. 7, 329–339 (2013)

    Article  Google Scholar 

  46. V. Patil, R.V. Dennis, T.K. Rout, S. Banerjee, G.D. Yadav, RSC Adv. 4, 49264 (2014)

    Article  CAS  Google Scholar 

  47. Q. Li, C. Liu, S. Fan, Nano Lett. 9, 3805 (2009)

    Article  CAS  Google Scholar 

  48. Y. Li, N. Hu, L. Wu et al., Nanotechnology 24, 455501 (2013)

    Article  Google Scholar 

  49. K.L. Lasater, E.T. Thostenson, Polym. 53, 5367 (2012)

    Article  CAS  Google Scholar 

  50. S. Vemuru, R. Wahi, S. Nagarajaiah, P. Ajayan, J. Strain Anal. Eng. Des. 44, 555 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge contributions of Dr. Inderpreet Kaur, Scientist, CSIO, Chandigarh and J.K Goswamy, Professor, UIET, Panjab University, Chandiagrh. Authors are grateful to Sophisticated Analytical Instrumention Facility (SAIF) of Panjab University, Chandigarh for FESEM characterization. Authors also thank Mr. Piyush Uniyal, Research Scholar, IIT Ropar for assisting in characterisation work. We also like to acknowldege Dr. Mamta Sharma, Assistant Professor, UIET, Panjab University for her technical support in characterisation work. We are grateful to Mr. Jaskaran Singh, Bachelor Student, UIET, Panjab University for his support. Authors thank Director, CSIO, Chandigarh for providing necessary laboratory facilities and Department of Science and Technology, New Delhi for providing INSPIRE faculty award to Dr. Parveen Kumar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav Sapra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sapra, G., Kumar, P., Kumar, N. et al. Effect of processing conditions on the electrical resistance of MWCNT/epoxy nanocomposite based strain sensors. J Mater Sci: Mater Electron 29, 19264–19277 (2018). https://doi.org/10.1007/s10854-018-0053-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0053-6

Navigation