Skip to main content
Log in

Electrical conductivity and Vickers hardness enhancement by pristine and functionalized MWCNTs incorporation in polycaprolactam matrix

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Several electronic applications have been developed through the use of carbon nanotubes and polymer composites. Multiwalled carbon nanotubes (MWCNTs), functionalized and pristine, were incorporated in polycaprolactam matrix; hydrochloric acid (19 and 38%) and formic acid (88%) were used as polymer solvents. Mechanical stirring method was employed to dissolve the polymer and achieve the dispersion of MWCNTs in polymer matrix. The obtained composites were characterized by scanning electron microscopy, confirming the presence of MWCNTs in polymer. Raman and Fourier transformed infrared spectra were used to identify the interaction between MWCNTs and polycaprolactam. Hardness improvements were proved through microhardness test, reaching values over 100 Hv units. The electrical conductivity in composites with the highest MWCNTs content (4 wt%) was confirmed. The results described in this manuscript confirm the possibility to develop a new material using MWCNTs dispersion in polycaprolactam matrix and possible applications in electronical and mechanical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Iijima, Physica B (1993). https://doi.org/10.1038/354056a0

    Google Scholar 

  2. M.S. Dresselhaus, G. Dresselhaus, R. Saito, Carbon (1995). https://doi.org/10.1016/0008-6223(95)00017-8

    Google Scholar 

  3. M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, A.M. Rao, The Physics of Fullerene-Based and Fullerene-Related Materials, 1st edn. (Springer, Dordrecht, 2000), pp. 331–379

    Book  Google Scholar 

  4. J.N. Coleman, U. Khan, W.J. Blau, Y.K. Gun’ko, Carbon (2006). https://doi.org/10.1016/j.carbon.2006.02.038

    Google Scholar 

  5. R.H. Baughman, A.A. Zakhidov, W.A. De Heer, Science (2002). https://doi.org/10.1126/science.1060928

    Google Scholar 

  6. M.J. Biercuk, M.C. Llaguno, M. Radosavljevic, J.K. Hyun, A.T. Johnson, Appl. Phys. Lett. (2002). https://doi.org/10.1063/1.1469696

    Google Scholar 

  7. M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Science (2013). https://doi.org/10.1126/science.1222453

    Google Scholar 

  8. C. Chen, W. Chen, Y. Zhang, Physica E (2005). https://doi.org/10.1016/j.physe.2005.02.006

    Google Scholar 

  9. N. Sano, J. Phys. D (2004). https://doi.org/10.1088/0022-3727/37/8/L01

    Google Scholar 

  10. G. Alonso-Nuñez, A.M. Valenzuela-Muñiz, F. Paraguay-Delgado, A. Aguilar, Y. Verde, Opt. Mater. (2006). https://doi.org/10.1016/j.optmat.2006.03.021

    Google Scholar 

  11. W. Wasel, K. Kuwana, P.T.A. Reilly, K. Saito, Carbon (2006). https://doi.org/10.1016/j.carbon.2006.11.013

    Google Scholar 

  12. S. Xie, W. Li, Z. Pan, B. Chang, L. Sun, J. Phys. Chem. Solids (2000). https://doi.org/10.1016/S0022-3697(99)00376-5

    Google Scholar 

  13. Z. Spitalsky, D. Tasis, K. Papagelis, C. Galiotis, Prog. Polym. Sci. (2010). https://doi.org/10.1016/j.progpolymsci.2009.09.003

    Google Scholar 

  14. T.W. Ebbesemen, H.J. Lezec, J.W. Bennet, H.F. Ghamei, T. Thio, Nature (1996). https://doi.org/10.1038/382054a0

    Google Scholar 

  15. W. Bauhofer, J.Z. Kovacs, Compos. Sci. Technol. (2008). https://doi.org/10.1016/j.compscitech.2008.06.018

    Google Scholar 

  16. M. Moniruzzaman, K.I. Winey, Macromolecules (2006). https://doi.org/10.1021/ma060733p

    Google Scholar 

  17. R.A.G. Rañola, J.M. Kalav, F.B. Sevilla, Appl. Mech. Mater. (2014). https://doi.org/10.4028/www.scientific.net/AMM.492.321

    Google Scholar 

  18. J. Choi, E.J. Park, D.W. Park, S.E. Shim, Synth. Met. (2010). https://doi.org/10.1016/j.synthmet.2010.10.022

    Google Scholar 

  19. P.V. Kodgire, A.R. Bhattacharyya, S. Bose, N. Gupta, A.R. Kulkarni, A. Misra, Chem. Phys. Lett. (2006). https://doi.org/10.1016/j.cplett.2006.10.088

    Google Scholar 

  20. B. Krause, P. Pötschke, L. Häußler, Compos. Sci. Technol. (2009). https://doi.org/10.1016/j.compscitech.2008.07.007

    Google Scholar 

  21. B. Jönsson, S. Hogmark, Thin Solid Films (1984). https://doi.org/10.1016/0040-6090(84)90123-8

    Google Scholar 

  22. T. Chudoba, M. Griepentrog, Zeitschrift für Metallkunde (2005). https://doi.org/10.3139/146.101168

    Google Scholar 

  23. X. Li, H. Gao, W.A. Scrivens, D. Fei, X. Xu, M.A. Sutton, A.P. Reynolds, Nanotechnology (2004). https://doi.org/10.1088/0957-4484/15/11/005

    Google Scholar 

  24. M. Cadek, J.N. Coleman, V. Barron, K. Hedicke, W.J. Blau, Appl. Phys. Lett. (2002). https://doi.org/10.1063/1.1533118

    Google Scholar 

  25. K.T. Lau, S.Q. Shi, H.M. Cheng, Compos. Sci. Technol. (2003). https://doi.org/10.1016/S0266-3538(03)00038-1

    Google Scholar 

  26. N.R. Raravikar, A.S. Vijayaraghavan, P. Keblinski, L.S. Schadler, P.M. Ajayan, Small (2005). https://doi.org/10.1002/smll.200400064

    Google Scholar 

  27. W.D. Zhang, L. Shen, I.Y. Phang, T. Liu, Macromolecules (2005). https://doi.org/10.1021/ma035594f

    Google Scholar 

  28. T. Liu, I.Y. Phang, L. Shen, S.Y. Chow, W.D. Zhang, Macromolecules (2005). https://doi.org/10.1021/ma049132t

    Google Scholar 

  29. A. Gómez Sánchez, P.G. González, L. García González, F.G. Granados Martínez, N. Flores Ramírez, V. López Garza, L. Domratcheva Lvova, J. Anal. Appl. Pyrol. (2015). https://doi.org/10.1016/j.jaap.2015.03.020

    Google Scholar 

  30. J.J. Contreras-Navarrete, F.G. Granados-Martínez, L. Domratcheva-Lvova, N. Flores-ramírez, M.R. Cisneros-Magaña, L. García-González, L. Zamora-Peredo, M.L. Mondragón-Sánchez, Superficies y Vacío 28(4) 111–114 (2015)

    Google Scholar 

  31. F.G. Granados-Martínez, L. Domratcheva-Lvova, N. Flores-Ramírez, L. García-González, L. Zamora-Peredo, M.L. Mondragón-Sánchez, Mater. Res. (2016). https://doi.org/10.1590/1980-5373-MR-2016-0783

    Google Scholar 

  32. P.M. Hemenger, Rev. Sci. Instrum. (2003). https://doi.org/10.1063/1.1686224

    Google Scholar 

  33. S.K. Mhetre, P.K. Patra, Y.K. Kim, S.B. Warner, Res. J. Tex. Apparel (2007). https://doi.org/10.1108/RJTA-11-03-2007-B005

    Google Scholar 

  34. H. Xia, Q. Wang, G. Qiu, Chem. Mater. (2003). https://doi.org/10.1021/cm0341890

    Google Scholar 

  35. W.D. Zhang, I.Y. Phang, T.X. Liu, Adv. Mater. (2005). https://doi.org/10.1002/adma.200501217

    Google Scholar 

  36. R. Scaffaro, A. Maio, A.C. Tito, Compos. Sci. Technol. (2012). https://doi.org/10.1016/j.compscitech.2012.08.010

    Google Scholar 

  37. M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jairo, Phys. Rep. (2005). https://doi.org/10.1016/j.physrep.2004.10.006

    Google Scholar 

  38. J.-G. Lee, D.-Y. Kim, M.G. Mali, S.S. Al-Deyab, M.T. Swihart, S.S. Yoon, Nanoscale (2015). https://doi.org/10.1039/C5NR06549F

    Google Scholar 

  39. M. Rahmat, P. Hubert, Compos. Sci. Technol. (2011). https://doi.org/10.1016/j.compscitech.2011.10.002

    Google Scholar 

  40. N. Mahmood, M. Islam, A. Hameed, S. Saeed, Polymers (2013). https://doi.org/10.3390/polym5041380

    Google Scholar 

  41. X.X. Yuan, Q. Zhou, X.Y. Li, P. Yang, K.K. Yang, Y.Z. Wang, Polym. Degrad. Stab. (2014). https://doi.org/10.1016/j.polymdegradstab.2014.07.016

    Google Scholar 

  42. O. Meincke, D. Kaemper, H. Weickman, C. Friedrich, M. Vathauer, H. Warth, Polymer (2004). https://doi.org/10.1016/j.polymer.2003.12.013

    Google Scholar 

  43. B. Schartel, B. Pörscke, U. Knoll, M. Abdel-Goad, Eur. Polym. J. (2005). https://doi.org/10.1016/j.eurpolymj.2004.11.023

    Google Scholar 

  44. P. Yu-Xun, Y. Zhong-Zheng, O. Yu-Chun, H. Guo-Hua, J. Polym. Sci. B (2000). https://doi.org/10.1002/(SICI)1099-0488(20000615)38:12%3c1626::AID-POLB80%3e3.0.CO;2-R

    Google Scholar 

  45. N.H. Bingham, J.M. Fry, Regression Linear Models in Statistic, 1st edn. (Springer, London, 2010), pp. 37–42

    Google Scholar 

Download references

Acknowledgements

Acknowledgment to “Universidad Michoacana de San Nicolás de Hidalgo”, Research Center of Micro and Nanotechnology of “Universidad Veracruzana”, “Universidad Nacional Autónoma de México”, “Instituto Tecnológico de Morelia” and CONACYT México.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Domratcheva-Lvova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Contreras-Navarrete, J.J., Ambriz-Torres, J.M., Gutiérrez-García, C.J. et al. Electrical conductivity and Vickers hardness enhancement by pristine and functionalized MWCNTs incorporation in polycaprolactam matrix. J Mater Sci: Mater Electron 29, 15776–15783 (2018). https://doi.org/10.1007/s10854-018-9302-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9302-y

Navigation