Skip to main content
Log in

Effect of the thickness of Si film on Si/Se film doped silicon prepared by femtosecond laser

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The high infrared absorption of silicon could be achieved by doping silicon with chalcogens via femtosecond laser. In the paper, the samples of Se-doped silicon with different thickness of Si film were prepared with the aid of femtosecond laser. The effect of the thickness of silicon film on optical and the electrical properties of se-doped silicon is investigated. All the samples were thermally annealed at 500 °C for 1 h, and the absorptance of all the samples was found with a certain degree of reduction. With the increase of thickness of silicon film, the results of visible-near infrared spectrum showed that the infrared absorptance increased first and then decreased. In particular, the optical absorption, sheet carrier density and responsivity for samples prepared with the silicon film that was 300 nm thick were greater than that of the samples prepared with the Si films of other thickness. The experiment demonstrated that it is significant to select the silicon film of appropriate thickness in the fabrication of Se doped silicon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G. Masini, L. Colace, G. Assanto, Mater. Sci. Eng. 89, 2 (2002). https://doi.org/10.1016/s0921-5107(01)00781-4

    Article  Google Scholar 

  2. A. Datas, C. Algora, Sol. Energy Mater. Sol. Cells 94, 2137 (2010). https://doi.org/10.1016/j.solmat.2010.06.042

    Article  Google Scholar 

  3. A. Luque, A. Marti, Phys. Rev. Lett. 78, 5014 (1997). https://doi.org/10.1103/PhysRevLett.78.5014

    Article  Google Scholar 

  4. Z.-Y. Zhao, P.-Z. Yang, Phys. Chem. Chem. Phys. 16, 17499 (2014). https://doi.org/10.1039/c4cp01522c

    Article  Google Scholar 

  5. K. Sánchez, I. Aguilera, P. Palacios, P. Wahnón, Phys. Rev. B 79, 165203 (2009)

    Article  Google Scholar 

  6. B.K. Nayak, M.C. Gupta, Appl. Phys. A 89, 663 (2007). https://doi.org/10.1007/s00339-007-4268-2

    Article  Google Scholar 

  7. M. Halbwax, T. Sarnet, P. Delaporte et al., Thin Solid Films 516, 6791 (2008). https://doi.org/10.1016/j.tsf.2007.12.117

    Article  Google Scholar 

  8. A.Y. Vorobyev, C. Guo, Appl. Surf. Sci. 257, 7291 (2011). https://doi.org/10.1016/j.apsusc.2011.03.106

    Article  Google Scholar 

  9. K. Liu, S. Qu, X. Zhang et al., Appl. Phys. A 114, 765 (2014). https://doi.org/10.1007/s00339-013-7682-7

    Article  Google Scholar 

  10. I. Umezu, J.M. Warrender, S. Charnvanichborikarn et al., J. Appl. Phys. 113, 213501. (2013). https://doi.org/10.1063/1.4804935

    Article  Google Scholar 

  11. A. Kurek, S.T. Barry, (2011) Sci. Technol. Adv. Mater. 12, 045001. https://doi.org/10.1088/1468-6996/12/4/045001

    Article  Google Scholar 

  12. M.J. Smith, Y.-T. Lin, M.-J. Sher, M.T. Winkler, E. Mazur, S. Gradecak, J. Appl. Phys. 110, 053524 (2011). https://doi.org/10.1063/1.3633528

    Article  Google Scholar 

  13. L. Du, Z. Wu, Y. Su et al., Mater. Sci. Semicond. Process. 54: 51 (2016). https://doi.org/10.1016/j.mssp.2016.06.019

    Article  Google Scholar 

  14. T. Zhang, P. Zhang, S. Li, W. Li, Z. Wu, Y. Jiang, Nanoscale Res. Lett. 8, 351 (2013). https://doi.org/10.1186/1556-276x-8-351

    Google Scholar 

  15. M.J. Smith, M. Winkler, M.-J. Sher, Y.-T. Lin, E. Mazur, S. Gradecak, Appl. Phys. A 105, 795 (2011). https://doi.org/10.1007/s00339-011-6651-2

    Article  Google Scholar 

  16. H.M. van Driel, J.E. Sipe, J.F. Young, Phys. Rev. Lett. 49, 1955 (1982). https://doi.org/10.1103/PhysRevLett.49.1955

    Article  Google Scholar 

  17. M.A. Sheehy, B.R. Tull, C.M. Friend, E. Mazur, (2007) Mater. Sci. Eng. B 137, 289. https://doi.org/10.1016/j.mseb.2006.10.002

    Article  Google Scholar 

  18. L.-P. Cao, Z.-D. Chen, C.-L. Zhang, J.-H. Yao, (2015) Front. Phys. https://doi.org/10.1007/s11467-015-0491-z

    Google Scholar 

  19. X. Li, L. Chang, R. Qiu, C. Wen, Z. Li, S. Hu, Appl. Surf. Sci. 258, 8002 (2012). https://doi.org/10.1016/j.apsusc.2012.04.155

    Article  Google Scholar 

  20. M.T. Winkler, D. Recht, M.-J. Sher, A.J. Said, E. Mazur, M.J. Aziz, Phys. Rev. Lett. 106, 178701 (2011). https://doi.org/10.1103/PhysRevLett.106.178701

    Article  Google Scholar 

Download references

Funding

This study was funded by National Science Funds for Creative Research Groups of China (61421002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiming Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Wu, Z., Du, L. et al. Effect of the thickness of Si film on Si/Se film doped silicon prepared by femtosecond laser. J Mater Sci: Mater Electron 29, 4526–4532 (2018). https://doi.org/10.1007/s10854-017-8401-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8401-5

Navigation