Skip to main content
Log in

Thermal tuning of electrical and dielectric characteristics of Mn-doped Zn0.95Fe0.05O dilute magnetic semiconductors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Structural and hence the electrical properties of transition metal doped ZnO-based dilute magnetic semiconductors can effectively be tuned thermally for their potential utilization in high temperature modern day spintronic devices. In this work, we investigate the effect of Mn doping on structural and its consequent effects on the electrical characteristics of Zn0.95−xMnxFe0.05O (x = 0.00, 0.01, 0.02, 0.03, 0.04 and 0.05) synthesized using sol–gel auto-combustion. X-ray diffraction analysis indicated that the synthesized samples had the pure wurtzite-type hexagonal crystal structure. Average crystallite size as determined using Scherrer’s formula was decreased with the increase of Mn doping while the porosity was increased. Temperature dependent dielectric measurements revealed that dielectric constant and dielectric loss was increased by increasing the temperature for Mn-doped samples. The conductivity was also enhanced with increasing temperature due to the enhanced evolution of charge carriers between the grains. Temperature dependent impedance spectroscopy confirmed that resistance and reactance were inverse function of the temperature revealing negative temperature coefficient of resistance. Nyquist plot shows semi-circular behavior attributed to the grain boundary effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Z.J. Othman, A. Matoussi, F. Rossi, G. Salviati, Appl. Phys. A 117, 1515 (2014)

    Article  Google Scholar 

  2. S.A. Ahmed, J. Mater. Sci. 52, 4977–4987 (2017)

    Article  Google Scholar 

  3. A. Kurhekar, P.R. Apte, S. Duttagupta, Braz. J. Phys. 44, 665–672 (2014)

    Article  Google Scholar 

  4. S.A. Ansari, A. Nisar, B. Fatma, W. Khan, A.H. Naqvi, Mater. Sci. Eng. B 177, 428–435 (2012)

    Article  Google Scholar 

  5. V. Pazhanivelu, A.P.B. Selvadurai, Y. Zhao, R. Thiyagarajan, R. Murugaraj, Phys. B 481, 91 (2016)

    Article  Google Scholar 

  6. G. Srinet, R. Kumar, V. Sajal, Ceram. Int. 39, 7557 (2013)

    Article  Google Scholar 

  7. L. Agarwal, B.K. Singh, S. Tripathi, P. Chakrabarti, Thin Solid Films 612, 259–266 (2016)

    Article  Google Scholar 

  8. J.F. Tang, Z.L. Tseng, L.C. Chen, S.Y. Chu, Sol. Energy Mater. Sol. Cells 154, 18–22 (2016)

    Article  Google Scholar 

  9. M.D. Neumann, C. Cobet, N. Esser, B. Laumer, T.A. Wassner, M. Eickhoff, M. Feneberg, R. Goldhahn, J. Appl. Phys. 110, 013520 (2011)

    Article  Google Scholar 

  10. Z.J. Othman, O. Hafef, A. Matoussi, F. Rossi, G. Salviati, Appl. Phys. A 121, 625–634 (2015)

    Article  Google Scholar 

  11. Y.Q. Gao, J.H. Ma, Z.M. Huang, Y. Hou, J. Wu, J.H. Chu, Appl. Phys. A 98, 129–134 (2010)

    Article  Google Scholar 

  12. M. Chaari, A. Matoussi, Appl. Phys. A 116, 1149–1160 (2014)

    Article  Google Scholar 

  13. M.R.A. Cruz, N.H. Como, I. Mejia, G.O. Zarzosa, G.A.M. Castanon, M.A.Q. Lopez, J. Sol-Gel Sci. Technol. 79, 184–189 (2016)

    Article  Google Scholar 

  14. V.D. Mote, Y. Purushotham, B.N. Dole, Mater. Des. 96, 99–105 (2016)

    Article  Google Scholar 

  15. C.O. Chey, O. Nur, M. Willander, J. Cryst. Growth 375, 125 (2013)

    Article  Google Scholar 

  16. R.C. Wang, C.C. Tsai, Appl. Phys. 94, 241 (2009)

    Article  Google Scholar 

  17. S. Yilmaz, M.S.P. Ozcanc, M. Altunbas, E.M. Glynnd, E. Bacaksiz, Appl. Surf. Sci. 257, 9293 (2011)

    Article  Google Scholar 

  18. N. Matsunami, M. Itoh, M. Kato, S.H.S. Kakiuchida, Appl. Surf. Sci. 350, 31 (2015)

    Article  Google Scholar 

  19. C. Jing, Y. Jiang, A. Liu, J. Magn. Magn. Mater. 322, 2395 (2010)

    Article  Google Scholar 

  20. M.L. Dinesh, G.D. Prasanna, C.S. Naveen, H.S. Jayanna, Indian J. Phys. 87, 147–153 (2013)

    Article  Google Scholar 

  21. T. Touam, F. Boudjouan, A. Chelouche, S. Khodja, M. Dehimi, D. Djouadi, J. Solard, A. Fischer, A. Boudrioua, Optik 126, 5548–5552 (2015)

    Article  Google Scholar 

  22. A.P. Rambu, V. Nica, M. Dobromir, Superlattices Microstruct. 59, 87 (2013)

    Article  Google Scholar 

  23. J.X. Bi, C.H. Yang, H.T. Wu, J. Alloy. Compd. 653, 1 (2015)

    Article  Google Scholar 

  24. M.S. Shafiq, M. Furqan, S. Atiq, M. Saleem, S. Riaz, S. Naseem, J. Sol-Gel Sci. Technol. 79, 535–542 (2016)

    Article  Google Scholar 

  25. B.D. Cuilty, Elements of X-Ray Diffraction, 2nd edn. (Addison Wesley, California, 1978), pp. 139–143

    Google Scholar 

  26. R. Sangheetha, S. Muthukumaran, M. Ashokkumar, Spectrochim. Acta A 144, 1–7 (2015)

    Article  Google Scholar 

  27. M. Shaban, A.M. El Sayed, Mater. Sci. Semicon. Process. 39, 136–147 (2015)

    Article  Google Scholar 

  28. M.P. Reddy, X. Zhou, A. Yann, S. Du, Q. Huang, A. Mohamed, Superlattices Microstruct. 81, 233–242 (2015)

    Article  Google Scholar 

  29. C. Koop, Phys. Rev. 83, 121–128 (1951)

    Article  Google Scholar 

  30. J.K. West, L.L. Hench, Principles of Electronics Ceramics (Wiley, New York, 1990), p. 189

    Google Scholar 

  31. V.L. Mathe, R.B. Kamble, Mater. Res. Bull. 43, 2160–2165 (2008)

    Article  Google Scholar 

  32. K.P. Thummer, H.H. Joshi, R.G. Kulkarni, J. Mater. Sci. Lett. 18, 1529–1532 (1999)

    Article  Google Scholar 

  33. S.A. Rahman, Egypt. J. Solids 29, 131–140 (2006)

    Google Scholar 

  34. I. Khan, S. Khan, W. Khan, Mater. Sci. Semicond. Process. 26, 516–526 (2014)

    Article  Google Scholar 

  35. M. George, S.S. Nair, A.M. John, P.A. Joy, M.R. Anantharaman, J. Phys. D 39, 900–905 (2006)

    Article  Google Scholar 

  36. A.K. Behera, N.K. Mohanty, S.K. Satpathy, B. Behera, P. Nayak, Cent. Eur. J. Phys. 12, 851 (2014)

    Google Scholar 

  37. T. Badapanda, S. Sarangi, B. Behera, S. Anwar, Curr. Appl. Phys. 14, 1192–1200 (2014)

    Article  Google Scholar 

  38. M.R. Syue, F.J. Wei, C.S. Chou, C.M. Fu, Thin Solid Films 519, 8303–8306 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

First two authors are grateful to Higher Education Commission (HEC) of Pakistan for their partial support under project # NRPU-2471. Asif Mahmood extends his appreciation to the Deanship of Scientific Research at King Saud University for funding the work through the research group project no. RGP-VPP-311.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahid Atiq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaineb, S., Atiq, S., Mahmood, A. et al. Thermal tuning of electrical and dielectric characteristics of Mn-doped Zn0.95Fe0.05O dilute magnetic semiconductors. J Mater Sci: Mater Electron 29, 3943–3951 (2018). https://doi.org/10.1007/s10854-017-8334-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8334-z

Navigation