Skip to main content
Log in

Free-standing paper-like heat spreading films based on graphene oxide-aromatic molecule composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Graphene has recently attracted great attention as a heat spreading material due to its unique thermal transfer property. Structural defects introduced into graphene unavoidably during graphene growth or processing are significantly affect its thermal transfer property. In this study, we choose four aromatic molecules (naphthalene, anthracene, tetracene and perylene) as “molecular patches” to heal structural defects in graphene, and free-standing paper-like heat spreading films based on graphene oxide (GO)-aromatic molecule composites have been fabricated via a synchronous reduction and assembly procedure, showing tunable optical transmittance and low sheet resistance. The Raman and X-ray diffraction characterizations of the as-prepared films indicate that the aromatic molecules have been adsorbed successfully by the GO and have partially restored the intrinsic quality of graphene. Preliminary studies on heat spreading materials using GO-aromatic molecule composite films demonstrate that the films can lead to obvious reduction in temperature of the hot source, indicating that these films are promising heat spreading materials for commercial portable electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Jang, Y.J. Park, X. Chen, J.H. Ahn, Adv. Mater. 28, 4184 (2016)

    Article  Google Scholar 

  2. L. Daukiya, C. Mattioli, F. Vonau, L. Simon, ACS Nano 11, 627 (2017)

    Article  Google Scholar 

  3. M. Jahanbakhshian, M. Yadi, S. Adami, R. Karimzadeh, J. Mater. Sci. 28, 13888 (2017)

    Google Scholar 

  4. Y. Zhang, M. Edwards, M.K. Samani, N. Logothetis, J.H. Liu, Carbon 106, 195 (2016)

    Article  Google Scholar 

  5. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A. A. Firsov, Science, 306, 666 (2004)

    Article  Google Scholar 

  6. P.W. Sutter, E.A. Sutter, Nat. Mater. 7, 406 (2008)

    Article  Google Scholar 

  7. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, B.H. Hong, Nature 457, 706 (2009)

    Article  Google Scholar 

  8. H. Bai, C. Li, G.Q. Shi, Adv. Mater. 23, 1089 (2011)

    Article  Google Scholar 

  9. G.X. Zhao, T. Wen, C.L. Chen, X.K. Wang, RSC. Adv. 2, 9286 (2012)

    Article  Google Scholar 

  10. R. Rozada, J. Paredes, A. Martínez-Alonso, J.D. Tascón, Nano Res. 6, 216 (2013)

    Article  Google Scholar 

  11. M. Cheng, R. Yang, L. Zhang, D. Shi, G. Zhang, Carbon 50, 2581 (2012)

    Article  Google Scholar 

  12. I.N. Kholmanov, J. Edgeworth, E. Cavaliere, C. Magnuson, R.S. Ruoff, Adv. Mater. 23, 1675 (2011)

    Article  Google Scholar 

  13. X.B. Cao, D.P. Qi, S.Y. Yin, J. Bu, X.D. Chen, Adv. Mater. 25, 2957 (2013)

    Article  Google Scholar 

  14. H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, Y. Chen, ACS Nano 2, 463 (2008)

    Article  Google Scholar 

  15. S. Zhang, Z.F. Lu, L. Gu, X.B. Cao, Nanotechnology 24, 465202 (2013)

    Article  Google Scholar 

  16. X. Zhou, G. Lu, X. Qi, S. Wu, H. Li, F. Boey, H. Zhang, J. Phys. Chem. C 113, 19119 (2009)

    Article  Google Scholar 

  17. A.C. Ferrari, Solid State Commun. 143, 47 (2007)

    Article  Google Scholar 

  18. S. Stankovich, D.A. Dikin, R.D. Piner, R.S. Ruoff, Carbon 45, 1558 (2007)

    Article  Google Scholar 

  19. Z. Xu, Y. Zhang, P. Li, C. Gao, ACS Nano 6, 7103 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Jiaxing Innovation Team Project (No. MTC2015-002). We also would like to gratefully acknowledge support from the the Zhejiang Science&Technology Innovation Team Project (No. 2010R50012-15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, D., Xiong, X. Free-standing paper-like heat spreading films based on graphene oxide-aromatic molecule composites. J Mater Sci: Mater Electron 29, 3050–3055 (2018). https://doi.org/10.1007/s10854-017-8236-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8236-0

Navigation