Skip to main content
Log in

Simple synthesis, characterization and investigation of photocatalytic activity of NiS2 nanoparticles using new precursors by hydrothermal method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, nickel sulfide (NiS2) nanostructures were successfully synthesized using a new nickel source by the simple hydrothermal method. These nanostructures were produced by reacting [Ni(pht)(H2O)2] as an organometallic precursor with various sulfur sources, including: thiourea, CS2, (NH4)2S and cysteine. The effect of type of sulfur sources on the morphology and purity of products was investigated. According to the investigations, increasing the release rate of sulfur from source increased the size of products and the by-products. The products were characterized by different analyses such as: X-ray diffraction pattern (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed that using massive precursors can be considered as an effective way for production of nanomaterials without using any capping agents. The optical properties of NiS2 nanostructures were studied by diffuse reflectance spectroscopy (DRS). The band gap of this product was estimated about 2.2 eV that proved this compound can be considered as a semiconductor. The obtained band gap was more than the NiS2 bulk due to the quantum effects in nanomaterials. The degradation percent of two dyes: erythrosine and phenol red dyes in the presence of this product as a photocatalyst under UV irradiation obtained about 57 and 71, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.E. Reflist, O. Amiri, M. Salavati-Niasari, M. Sabet, D. Ghanbari, Mater. Sci. Semicond. Process. 16, 1485–1494 (2013)

    Article  Google Scholar 

  2. D. Ghanbari, M. Salavati-Niasari, M. Sabet, J. Cluster Sci. 23, 1081–1095 (2012)

    Article  Google Scholar 

  3. M. Sabet, M. Salavati-Niasari, O. Amiri, Electrochim. Acta 117, 504–520 (2014)

    Article  Google Scholar 

  4. M. Sabet, M. Salavati-Niasari, D. Ghanbari, O. Amiri, M. Yousefi, Mater. Sci. Semicond. Process. 16, 696–704 (2013)

    Article  Google Scholar 

  5. M. Salavati-Niasari, F. Davar, H. Emadi, Chalcogenide Lett. 7, 647–655 (2010)

    Google Scholar 

  6. F. Davar, M.R. Loghman-Estarki, M. Salavati-Niasari, R. Ashiri, Int. J. Appl. Ceram. Technol. 11, 637–644 (2014)

    Article  Google Scholar 

  7. M. Salavati-Niasari, D. Ghanbari, M.R. Loghman-Estarki, Polyhedron 35, 149–153 (2012)

  8. S. Amaresh, K. Karthikeyan, I.-C. Jang, Y. Lee, J. Mater. Chem. A 2, 11099–11106 (2014)

    Article  Google Scholar 

  9. M. Behboudnia, M. Majlesara, B. Khanbabaee, Mater. Sci. Eng. B 122, 160–163 (2005)

    Article  Google Scholar 

  10. R. Gaur, P. Jeevanandam, New J. Chem. 39, 9442–9453 (2015)

    Article  Google Scholar 

  11. A. Ghezelbash, M.B. Sigman, B.A. Korgel, Nano Lett. 4, 537–542 (2004)

    Article  Google Scholar 

  12. Y. Hu, J. Chen, W. Chen, X. Lin, X. Li, Adv. Mater. 15, 726–729 (2003)

    Article  Google Scholar 

  13. L. Zhang, J.C. Yu, M. Mo, L. Wu, Q. Li, K.W. Kwong, J. Am. Chem. Soc. 126, 8116–8117 (2004)

    Article  Google Scholar 

  14. M.J. Islam, D.A. Reddy, N.S. Han, J. Choi, J.K. Song, T.K. Kim, Phys. Chem. Chem. Phys. 18, 24984–24993 (2016)

    Article  Google Scholar 

  15. S. Lee, D.A. Reddy, T.K. Kim, RSC Adv. 6, 37180–37188 (2016)

    Article  Google Scholar 

  16. M.J. Islam, D.A. Reddy, J. Choi, T.K. Kim, RSC Adv. 6, 19341–19350 (2016)

    Article  Google Scholar 

  17. J. Choi, D.A. Reddy, M.J. Islam, R. Ma, T.K. Kim, J. Alloys Compd. 688, 527–536 (2016)

    Article  Google Scholar 

  18. J. Choi, D.A. Reddy, M.J. Islam, B. Seo, S.H. Joo, T.K. Kim, Appl. Surf. Sci. 358, 159–167 (2015)

    Article  Google Scholar 

  19. J. Choi, D.A. Reddy, T.K. Kim, Ceram. Int. 41, 13793–13803 (2015)

    Article  Google Scholar 

  20. D.A. Reddy, S. Lee, J. Choi, S. Park, R. Ma, H. Yang, T.K. Kim, Appl. Surf. Sci. 341, 175–184 (2015)

    Article  Google Scholar 

  21. D.A. Reddy, R. Ma, T.K. Kim, Ceram. Int. 41, 6999–7009 (2015)

    Article  Google Scholar 

  22. D.A. Reddy, J. Choi, S. Lee, R. Ma, T.K. Kim, RSC Adv. 5, 18342–18351 (2015)

    Article  Google Scholar 

  23. D.A. Reddy, R. Ma, M.Y. Choi, T.K. Kim, Appl. Surf. Sci. 324, 725–735 (2015)

    Article  Google Scholar 

  24. F. Soofivand, F. Mohandes, M. Salavati-Niasari, Mater. Res. Bull. 48, 2084–2094 (2013)

    Article  Google Scholar 

  25. F. Soofivand, M. Salavati-Niasari, RSC Adv. 5, 64346–64353 (2015)

    Article  Google Scholar 

  26. F. Soofivand, M. Salavati-Niasari, J. Photochem. Photobiol. A 337, 44–53 (2017)

    Article  Google Scholar 

  27. A. Patterson, Phys. Rev. 56, 978 (1939)

    Article  Google Scholar 

  28. J. Osuwa, P. Uwaezi, Chalcogenide Lett. 8, 587–594 (2011)

    Google Scholar 

  29. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi. 15, 627–637 (1966)

    Article  Google Scholar 

  30. I. Ferrer, C. Sanchez, J. Mater. Process. Technol. 92, 239–242 (1999)

    Article  Google Scholar 

  31. K. Salehi, B. Shahmoradi, A. Bahmani, M. Pirsaheb, H. Shivaraju, Desalin. Water Treat. 57, 25256–25266 (2016)

    Article  Google Scholar 

  32. H. Eskandarloo, A. Badiei, M.A. Behnajady, M. Afshar, Res. Chem. Intermed. 41, 9929–9949 (2015)

    Article  Google Scholar 

  33. M. Salavati-Niasari, G. Hosseinzadeh, F. Davar, J. Alloys Compd. 509, 4098–4103 (2011)

    Article  Google Scholar 

  34. D. Ghanbari, M. Salavati-Niasari, M. Ghasemi-Kooch, J. Ind. Eng. Chem. 20, 3970–3974 (2014)

    Article  Google Scholar 

  35. M. Salavati-Niasari, D. Ghanbari, M.R. Loghman-Estarki, Polyhedron 35, 149–153 (2012)

    Article  Google Scholar 

  36. M. Salavati-Niasari, F. Mohandes, F. Davar, Polyhedron 28, 2263–2267 (2009)

    Article  Google Scholar 

  37. M. Salavati-Niasari, M. Shakouri-Arani, F. Davar, Microporous Mesoporous Mater. 116, 77–85 (2008)

    Article  Google Scholar 

  38. M. Salavati-Niasari, J. Mol. Catal. A 245, 192–199 (2006)

    Article  Google Scholar 

  39. M. Salavati-Niasari, Chem. Lett. 34, 1444–1445 (2005)

    Article  Google Scholar 

  40. M. Salavati-Niasari, F. Farzaneh, M. Ghandi, J. Mol. Catal. A 186, 101–110 (2002), https://scholar.google.com/citations?view_op=view_citation&hl=en&user=SZrLKwMAAAAJ&cstart=60&citation_for_view=SZrLKwMAAAAJ:4DMP91E08xMC

  41. M. Salavati-Niasari, F. Davar, M. Mazaheri, J. Alloys Compd. 470, 502–506 (2009), https://scholar.google.com/citations?view_op=view_citation&hl=en&user=SZrLKwMAAAAJ&cstart=60&citation_for_view=SZrLKwMAAAAJ:mB3voiENLucC

  42. M. Salavati-Niasari, Inorg. Chem. Commun. 8, 174–177 (2005)

    Article  Google Scholar 

  43. M. Salavati-Niasari, Chem. Lett. 34, 244–245 (2005)

    Article  Google Scholar 

  44. M. Salavati-Niasari, J. Mol. Catal. A 217, 87–92 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the council of Iran National Science Foundation (INSF) and University of Kashan for supporting this work by Grant No. (159271/5579).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Salavati-Niasari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soofivand, F., Esmaeili, E., Sabet, M. et al. Simple synthesis, characterization and investigation of photocatalytic activity of NiS2 nanoparticles using new precursors by hydrothermal method. J Mater Sci: Mater Electron 29, 858–865 (2018). https://doi.org/10.1007/s10854-017-7981-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7981-4

Navigation