Skip to main content
Log in

Calcium doped BiFeO3 films: Rietveld analysis and piezoelectric properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Pure and calcium modified CaxBi(1−x)FeO3 (x = 0.0, 0.1, 0.2, 0.30) thin films were fabricated on Pt(111)/Ti/SiO2/Si substrates by the soft chemical method. The crystal structure and physical properties of polycrystalline Ca2+-doped BiFeO3 samples have been investigated. Structural studies by XRD reveal the co-existence of distorted rhombohedral and tetragonal phases in the highest doped BiFeO3 where enhanced piezoelectric properties are produced by internal strain. XPS results show that the oxidation state of Fe was purely 3+, which is beneficial for producing a piezoelectric film with low leakage current. Piezoelectric properties are improved in the highest Ca-doped sample due to the coexistence in the crystal structure of BFO with a primitive cubic perovskite lattice with four-fold symmetry and a large tetragonal distortion within the crystal domain. This observation introduces piezoelectronics at room temperature by combining electronic conduction with electric and magnetic degrees of freedom which are already present in the multiferroic BiFeO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E.V. Salje, Phase transitions in ferroelastic and co-elastic crystals. (Cambridge University Press, Cambridge, 1990)

    Google Scholar 

  2. M. Fiebig, T. Lottermoser, D. Fröhlich, A.V. Golsev, R.V. Pisarev, Observation of coupled magnetic and electric domains. Nature 419, 818–820 (2002)

    Article  Google Scholar 

  3. N.A. Hill, Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000)

    Article  Google Scholar 

  4. G.A. Smolenskii, I.E. Chupis, Ferroelectromagnets. Sov. Phys. Usp. 25, 475–493 (1982)

    Article  Google Scholar 

  5. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, K.M. Rabe, M. Wuttig, R. Ramesh, Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003)

    Article  Google Scholar 

  6. J. Li, J. Wang, M. Wuttig, R. Ramesh, B. Wang, B. Ruette, A.P. Pyatakov, A.K. Zvezdin, D. Viehland, Dramatically enhanced polarization in (001), (101) and (111) BiFeO3 thin films due to epitaxial-induced transitions. Appl. Phys. Lett. 84, 5261–5263 (2004)

    Article  Google Scholar 

  7. W.J. Gallagher, S.S.P. Parkin, Development of the magnetic tunnel junction MRAM at IBM: from first junctions to a 16-Mb MRAM demonstrator chip. IBM J. Res. Dev. 50, 5–23 (2006)

    Article  Google Scholar 

  8. D. Dawber, K.M. Rabe, J.F. Scott, Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083–1130 (2005)

    Article  Google Scholar 

  9. P. Royen, K. Swars, Das system Wismutoxyd-Eisenoxyd im Bereich von 0 bis 55Mol% Eisenoxyd. Angew. Chem. 24, 779–781 (1957)

    Article  Google Scholar 

  10. S.V. Kiselev, R.P. Ozerov, G.S. Zhdanov, detection of magnetic order in ferroelectric BiFeO3 by neutron diffraction. Sov. Phys. Dokl. 7, 742–744 (1963)

    Google Scholar 

  11. I. Sosnowksa, T. Peterlin-Neumaier, E. Steichele, Spiral magnetic ordering in bismuth ferrite. J. Phys. C 15, 4835–4846 (1982)

    Article  Google Scholar 

  12. Y. Wang, C.W. Nan, Effect of Tb doping on electric and magnetic behavior of BiFeO3 thin films. J. Appl. Phys. 103, 024103 (2008)

    Article  Google Scholar 

  13. J. Liu, M.Y. Li, L. Pei, B.F. Yu, D.Y. Guo, X.Z. Zhao, Effect of Ce doping on the microstructure and electrical properties of BiFeO3 thin films prepared by chemical solution deposition. J. Phys. D 42, 115409 (2009)

    Article  Google Scholar 

  14. J. Liu, M.Y. Li, L. Pei, J. Wang, B.F. Yu, X. Wang, X.Z. Zhao, Structural and multiferroic properties of the Ce-doped BiFeO3 thin films. J. Alloys Compd. 493, 544 (2010)

    Article  Google Scholar 

  15. A. Lahmar, S. Habouti, M. Dietze, C.H. Solterbeck, M. Es-Souni, Effects of rare earth manganites on structural, ferroelectric, and magnetic properties of BiFeO3 thin films. Appl. Phys. Lett. 94, 012903 (2009)

    Article  Google Scholar 

  16. Y. Wang, C.W. Nan, Structural and ferroic properties of Zr-doped BiFeO3 thin films. Ferroelectrics 357, 172 (2007)

    Article  Google Scholar 

  17. H. Naganuma, J. Miura, S. Okamura, Ferroelectric, electrical and magnetic properties of Cr, Mn, Co, Ni, Cu added polycrystalline BiFeO3 films. Appl. Phys. Lett. 93, 052901 (2008)

    Article  Google Scholar 

  18. P. Kharel, S. Talebi, B. Ramachandran, A. Dixit, V.M. Naik, M.B. Sahana, C. Sudakar, R. Naik, M.S.R. Rao, G. Lawes, Structural, magnetic, and electrical studies on polycrystalline transition-metal-doped BiFeO3 thin films. J. Phys. C 21, 036001 (2009)

    Google Scholar 

  19. J. Liu, M.Y. Li, L. Pei, J. Wang, Z.X. Hu, X. Wang, X.Z. Zhao, Effect of Ce and Zr codoping on the multiferroic properties of BiFeO3 thin films. Europhys. Lett. 89, 57004 (2010)

    Article  Google Scholar 

  20. G.L. Yuan, S.W. Or, Multiferroicity in polarized single-phase Bi0.875Sm0.125FeO3, ceramics. J. Appl. Phys 100, 024109 (2006)

    Article  Google Scholar 

  21. R. Ramesh, N.A. Spaldin, Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21 (2007)

    Article  Google Scholar 

  22. M. Fiebig, Revival of the magnetoelectric effect. J. Phys. D 38, R123 (2005)

    Article  Google Scholar 

  23. C.-H. Yang, J. Seidel, S.Y. Kim, P.B. Rossen, P. Yu, M. Gajek, Y.H. Chu, L.W. Martin, M.B. Holcomb, P. Maksymovych, L. Scullin, R. Ramesh, Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. Nature 8, 485 (2009)

    Article  Google Scholar 

  24. A.K. Vishwakarma, P. Tripathi, A. Srivastava, A.S.K. Sinha, O.N. Srivastava, Band gap engineering of Gd and Co doped BiFeO3 and their application in hydrogen production through photoelectrochemical route. Int. J. Hydrog. Energy (2017). doi:10.1016/j.ijhydene.2017.07.153

    Google Scholar 

  25. F. Wang, D. Chen, N. Zhang, S. Wang, L. Qin, X. Sun, Y. Huang, Oxygen vacancies induced by zirconium doping in bismuth ferrite nanoparticles for enhanced photocatalytic performance. J. Colloid Interface Sci. (2017). doi:10.1016/j.jcis.2017.08.056

    Google Scholar 

  26. M.A. Ahmed, S.F. Mansour, S.I. El-Dek, M.M. Karamany, Hybridization between microstructure and magnetization improvement in lead and RE co-doped BiFeO3. J. Rare Earths 34(5), 495–506 (2016)

    Article  Google Scholar 

  27. H. Gao, J. Tian, H. Zheng, F. Tan, W. Zhang, Magnetic and optical properties of La-doped BiFeO3 films prepared by sol–gel route. J. Mater. Sci. 26(2), 700–704 (2015)

    Google Scholar 

  28. P. Suresh, S. Srinath, Effect of La substitution on structure and magnetic properties of sol-gel prepared BiFeO3. J. Appl. Phys. 113, 17D920 (2013)

    Article  Google Scholar 

  29. A.H.M. Gonzalez, A.Z. Simões, L.S. Cavalcante, Soft chemical deposition of BiFeO3 thin films. Appl. Phys. Lett. 90, 052906-1–052906-3 (2007)

    Article  Google Scholar 

  30. A.Z. Simões, R.F.C. Pianno, E.C. Aguiar, J.A. Varela, E. Longo, Effect of niobium dopant on fatigue characteristics of BiFeO3 thin films grown on Pt electrodes. J. Alloy. Comp. 479, 274–279 (2009)

    Article  Google Scholar 

  31. L.V. Costa, R.C. Deus, M.A. Zaghete, A. Ries, F. Moura, J.A. Varela, Experimental evidence of enhanced ferroelectricity in Ca doped BiFeO3. Mater. Chem. Phys. 144, 476–483 (2014)

    Article  Google Scholar 

  32. R.A. Young, A. Sakthivel, T.S. Moss, C.O. Paiva-Santos, DBWS-9411 - an upgrade of the DBWS*.* programs for Rietveld refinement with PC and mainframe computers. J. Appl. Cryst. 28, 366–367 (1995)

    Article  Google Scholar 

  33. D.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2, 65 (1969)

    Article  Google Scholar 

  34. D.L. Bish, Quantitative mineralogical analysis using the Rietveld full-pattern fitting method J.E. Post. Am. Miner. 78, 932 (1993)

    Google Scholar 

  35. L. Lutterotti, S. Matthies, H.R. Henk, Material Analysis Using Diffraction: a user friendly program for Rietveld texture analysis and more. Proceeeding of the twelfth international conference and textures of materials (ICOTOM-12), vol. 1 (1999), p. 1599. http://www.ing.unitn.it/~maud/

  36. L. Lutterotti, S. Matthies, H.R. Wenk, A.J. Schultz, J.J. Richardson, Texture and structure analysis of deformed limestone from neutron diffraction spectra. Appl. Phys. 81, 594 (1997)

    Article  Google Scholar 

  37. G. Will, Powder diffraction: the Rietveld Method and the two stage method to determine and refine crystal structures from powder diffraction data (Springer, Berlin, 2006) pp. 44–69

    Google Scholar 

  38. T. Barth, G. Lunde, Lattice constants of the cuprous and silver halides. Z. Phys. Chem. 121, 78 (1926)

    Google Scholar 

  39. C. Lepoittevin, S. Malo, N. Barrier, N. Nguyen, G. Van Tendeloo, M. Hervieu, Long-range ordering in the Bi1−xAexFeO3−x/2 perovskites: Bi1/3Sr2/3FeO2.67 and Bi1/2Ca1/2FeO2.75. J. Solid State Chem. 181, 2601 (2008)

    Article  Google Scholar 

  40. J. Tian, H. Gao, H. Deng, L. Sun, H. Kong, P. Yang, J. Chu, Structural, magnetic and optical properties of Ni-doped TiO2 thin films deposited on silicon(1 0 0) substrates by sol–gel process. J. Alloys Compd. 581, 318–323 (2013)

    Article  Google Scholar 

  41. J. Zhang, Q. Xu, Z. Feng, M. Li, C. Li, Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angew. Chem. 47(9), 1766–1769 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The financial support of this research project by the Brazilian research funding agencies CNPq 573636/2008-7, INCTMN 2008/57872-1 and FAPESP 2013/07296-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Z. Simões.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goncalves, L.F., Rocha, L.S.R., Longo, E. et al. Calcium doped BiFeO3 films: Rietveld analysis and piezoelectric properties. J Mater Sci: Mater Electron 29, 784–793 (2018). https://doi.org/10.1007/s10854-017-7973-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7973-4

Navigation