Skip to main content
Log in

Semiconducting metal oxides for gas sensor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present paper reports the synthesis of the semiconducting metal oxides of tin, copper and zinc via a facile hydrothermal route. By the X-ray diffraction technique the as-synthesized materials are investigated and its crystal properties are characterized.The AC conductivity of the metal oxides are determined in the ambient and cigarette smoke environment. The results show, besides the conventional method of testing the sensitivity of the metal oxides, the dielectric analysis is a versatile method for determining potentially suitable candidates for sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.S. Aricò, P. Bruce, B. Scrosati, J.-M. Tarascon, W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366–377 (2005)

    Article  Google Scholar 

  2. C.C. Koch, Nanostructured Materials: Processing, Properties and Applications, (2nd edn) (Elsevier Science Publications, New York, 2007)

    Google Scholar 

  3. P. Moriarty, Nanostructured materials. Rep. Prog. Phys. 64, 297 (2001)

    Article  Google Scholar 

  4. A. Sobhani-Nasab, Z. Zahraei, M. Akbari, M. Maddahfar, S.M. Hosseinpour-Mashkani, Synthesis, characterization, and antibacterial activities of ZnLaFe2O4/NiTiO3 nanocomposite. J. Mol. Struct. 1139, 430–435 (2017)

    Article  Google Scholar 

  5. A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, M. Salavati-Niasari, S. Bagheri, Controlled synthesis of CoTiO3 nanostructures via two-step sol–gel method in the presence of 1,3,5-benzenetricarboxylic acid. J. Cluster Sci. 26(4), 1305–1318 (2015)

    Article  Google Scholar 

  6. A. Ziarati, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M.R. Ganjali, A. Badiei, Sonication method synergism with rare earth based nanocatalyst: preparation of NiFe2–x EuxO4 nanostructures and its catalytic applications for the synthesis of benzimidazoles, benzoxazoles, and benzothiazoles under ultrasonic irradiation. J. Rare Earths 35(4), 374–381 (2017)

    Article  Google Scholar 

  7. G. Neri, Thin 2D: the new dimensionality in gas sensing. Chemosensors 5(3), 21 (2017)

    Article  Google Scholar 

  8. J.C. Briones, G. Castillon, M.P. Delmo, C.G.N. Santos, Magnetic-field-enhanced morphology of tin oxide nanomaterials for gas sensing applications. J. Nanomater. 2017, 4396723 (2017)

  9. W. Yang, L. Gan, H. Li, T. Zhai, Two-dimensional layered nanomaterials for gas-sensing applications. Inorg. Chem. Front. 3(4), 433–451 (2016)

    Article  Google Scholar 

  10. V. Galstyan, E. Comini, I. Kholmanov, A. Ponzoni, V. Sberveglieri, N. Poli, G. Faglia, G. Sberveglieri, Graphene-zinc oxide based nanomaterials for gas sensing devices. Proc. Eng. 168, 1172–1175 (2016)

    Article  Google Scholar 

  11. S.M. Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, Precipitation synthesis, characterization, morphological control, and photocatalyst application of ZnWO4 nanoparticles. J. Electron. Mater. 45, 3612–3620 (2016)

    Article  Google Scholar 

  12. M. Ramezani, S.M. Hosseinpour-Mashkani, Controlled synthesis, characterization, and photocatalytic application of Co2TiO4 nanoparticles. J. Electron. Mater. 46, 1371–1377 (2016)

    Article  Google Scholar 

  13. M. Ramezani, A. Sobhani-Nasab, A. Davoodi, Bismuth selenide nanoparticles: simple synthesis, characterization, and its light harvesting applications in the presence of novel precursor. J. Mater. Sci. 26(7), 5440–5445 (2015)

    Google Scholar 

  14. M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, M.R. Jeddy. Nanocrystalline Ce-doped copper ferrite: synthesis, characterization, and its photocatalyst application. J. Mater. Sci. 27(11), 11691–11697 (2016)

    Google Scholar 

  15. G. Venugopal, A. Hunt, F. Alamgir, Nanomaterials for energy storage in lithium-ion battery applications. Mater. Mater. 5, 42–45 (2010)

    Google Scholar 

  16. S. Wu, R. Xu, M. Lu, R. Ge, J. Iocozzia, C. Han, B. Jiang, Z. Lin, Graphene-containing nanomaterials for lithium-ion batteries. Adv. Energy Mater. 5(21), 1500400 (2015)

  17. X. Zhang, A.-G. Porras-Gutierrez, A. Mauger, H. Groult, C.M. Julien, Nanotechnology of positive electrodes for li-ion batteries. Inorganics 5(2), 25 (2017)

    Article  Google Scholar 

  18. I. DeAlba-Montero, J. Guajardo-Pacheco, E. Morales-Sánchez, R. Araujo-Martínez, G.M. Loredo-Becerra, G.-A. Martínez-Castañón, F. Ruiz, M.E. Compeán Jasso, Antimicrobial properties of copper nanoparticles and amino acid chelated copper nanoparticles produced by using a soya extract. Bioinorg. Chem. Appl. 2017, 1064918 (2017)

  19. Y.-H. Hsueh, P.-H. Tsai, K.-S. Lin, pH-dependent antimicrobial properties of copper oxide nanoparticles in Staphylococcus aureus. Int. J. Mol. Sci. 18(4), 793 (2017)

    Article  Google Scholar 

  20. A.B. Moghaddam, M. Moniri, S. Azizi, R.A. Rahim, A.B. Ariff, W.Z. Saad, F. Namvar, M. Navaderi, R. Mohamad. Biosynthesis of ZnO Nanoparticles by a New Pichia kudriavzevii yeast strain and evaluation of their antimicrobial and antioxidant activities. Molecules 22(6), 872 (2017)

    Article  Google Scholar 

  21. P.K. Mishra, H. Mishra, A. Ekielski, S. Talegaonkar, B. Vaidya, Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug Discov. Today (2017). doi:10.1016/j.drudis.2017.08.006

  22. S. Arepalli, P. Moloney, Engineered nanomaterials in aerospace. MRS Bull. 40(10), 804–811 (2015)

    Article  Google Scholar 

  23. A. Sobhani-Nasab, H. Naderi, M. Rahimi-Nasrabadi, M.R. Ganjali, Evaluation of supercapacitive behavior of samarium tungstate nanoparticles synthesized via sonochemical method. J. Mater. Sci. 28(12), 8588–8595 (2017)

    Google Scholar 

  24. S. Saha, M. Jana, T. Kuila, High performing hybrid nanomaterials for supercapacitor applications. Hybrid Nanomater. 79 (2017)

  25. C. Wang, E. Zhou, W. He, X. Deng, J. Huang, M. Ding, X. Wei, X. Liu, X. Xu, NiCo2O4-based supercapacitor nanomaterials. Nanomaterials 7(2), 41 (2017)

    Article  Google Scholar 

  26. V.K. Yemmireddy, Y.-C. Hung, Using photocatalyst metal oxides as antimicrobial surface coatings to ensure food safety: opportunities and challenges. Compr. Rev. Food Sci. Food Saf. 16(4), 617–631 (2017)

    Article  Google Scholar 

  27. N.R. Vanier, C.H. Munro, E.L. Decker, R.B. Wilson, M.E. Wehrle, Use of nanoparticulate organic pigments in paints and coatings. U.S. Patent 6,875,800, (2005)

  28. A. Rabenau, The role of hydrothermal synthesis in preparative chemistry. Angew. Chem. Int. Ed. Engl. 24, 1026–1040 (1985)

    Article  Google Scholar 

  29. S. Razzaque, S.Z. Hussain, I. Hussain, B. Tan, Design and utility of metal/metal oxide nanoparticles mediated by thioether end-functionalized polymeric ligands. Polymers 8(4), 156 (2016)

    Article  Google Scholar 

  30. S.A. Corr, Metal oxide nanoparticles. In Nanoscience (Royal Society of Chemistry, Cambridge, 2012), pp. 180–207

    Google Scholar 

  31. M.G. Krishna, M. Vinjanampati, D.D. Purkayastha, Metal oxide thin films and nanostructures for self-cleaning applications: current status and future prospects. Eur. Phys. J. Appl. Phys. 62(3), 30001 (2013)

    Article  Google Scholar 

  32. Z. Zheng, Synthesis and modifications of metal oxide nanostructures and their applications (Doctoral dissertation, Queensland University of Technology), (2009)

  33. J. Wu, J. Cao, W.-Q. Han, A. Janotti, H.-C. Kim, Functional Metal Oxide Nanostructures, Vol. 149 (Springer, New York, 2011)

    Google Scholar 

  34. M. Fernández-García, J.A. Rodriguez, Metal oxide nanoparticles. In Encyclopedia of Inorganic and Bioinorganic Chemistry (Brookhaven National Laboratory, New York, 2011)

    Google Scholar 

  35. P. Kofstad, Defects and transport properties of metal oxides. Oxid. Metals 44(1), 3–27 (1995)

    Article  Google Scholar 

  36. R.E. Whan, Materials characterization (9th edn). In Metals Handbook, Vol. 10 (ASM Handbook Committee, Cleveland, 2010)

    Google Scholar 

  37. M. Jose, V. Sumithra, S. Rajan, P. Rajeshkumar, J. Mathew, Dielectric properties of nanocrystalline ZnS. Acad. Rev. 17(1 & 2), 93–100 (2010) ISSN: 0973–7464 SB

    Google Scholar 

  38. J. Mohamed, L. Amalraj, Effect of precursor concentration on physical properties of nebulized spray deposited In 2S3 thin films. J. Asian Ceram. Soc. 4(3), 357–366 (2016)

    Article  Google Scholar 

  39. C. Sudakar, S. Singh, M.S. Ramachandra Rao, G. Lawes, The role of defects in functional oxide nanostructures. In Functional Metal Oxide Nanostructures (Springer, New York, 2012), pp. 37–68

    Chapter  Google Scholar 

  40. B. Butz, P. Kruse, H. Störmer, D. Gerthsen, A. Müller, A. Weber, E. Ivers-Tiffée, Correlation between microstructure and degradation in conductivity for cubic Y2O3-doped ZrO2. Solid State Ionics 177(37), 3275–3284 (2006)

    Article  Google Scholar 

  41. G. Pacchioni, Ab initio theory of point defects in oxide materials: structure, properties, chemical reactivity. Solid State Sci. 2, 161–179 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison Christina Fernandez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandez, A.C., Sakthivel, P. & Jesudurai, J. Semiconducting metal oxides for gas sensor applications. J Mater Sci: Mater Electron 29, 357–364 (2018). https://doi.org/10.1007/s10854-017-7924-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7924-0

Navigation