Skip to main content

II-VI Semiconductor-Based Thin Film Electric and Electronic Gas Sensors

  • Chapter
  • First Online:
Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors

Abstract

This chapter describes II-VI semiconductor films that have been applied to sensing various gases and vapors. Their gas responses have been stimulated by heat or light, and their readouts are enabled by transducing elements that usually comprise resistive principles. Previous studies on gas-sensitive II-VI semiconductors have consistently shown that these materials must meet similar requirements to other gas-sensitive materials, such as metal oxides. These requirements include small grain size, high porosity, optimal charge carrier concentration, and high chemical surface activity. Hence, part of the research on II-VI semiconductors as gas-sensitive elements involves exploring methods and routes that allow tailoring the semiconductor’s morphology, structure, chemical, and electronic properties. Among various available synthetic routes for II-VI semiconductors, chemical bath, precipitation, or hydrothermal processes are the most popular methods, usually assisted by other secondary deposition methods to integrate the synthesized materials over the appropriate gas sensing transducing platforms. The integrated II-VI semiconducting compounds are generally in the form of thin or thick layers containing spherical-like particles or other low-dimensional or hierarchical structures in the form of flakes or dendrites. These low-dimensional or hierarchical structures typically report superior gas responses than traditional spherical-like particles. Here we discuss in detail the fabrication processes, synthetic routes, and gas sensing properties of II-VI semiconducting films. The discussion addresses the most common factors influencing II-VI semiconductors’ gas sensing properties, their possible gas sensing mechanism(s), and the metrics of their functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hontañón E, Vallejos S. One-dimensional metal oxide nanostructures for chemical sensors. In: Nanostructured materials - classification, growth, simulation, characterization, and devices, IntechOpen; 2021.

    Google Scholar 

  2. Šetka M, Claros M, Chmela O, Vallejos S. Photoactivated materials and sensors for NO2 monitoring. J Mater Chem C. 2021;9(47):16804–27.

    Google Scholar 

  3. Li HY, Yoon JW, Lee CS, Lim K, Yoon JW, Lee JH. Visible light assisted NO2 sensing at room temperature by CdS nanoflake array. Sens Actuator B. 2018;255:2963–70.

    Article  Google Scholar 

  4. Chakraborty S, Pal M. Improved ethanol sensing behaviour of cadmium sulphide nanoflakes: beneficial effect of morphology. Sensors Actuators B Chem. 2017;242:1155–64.

    Article  ADS  Google Scholar 

  5. Gaiardo A, Fabbri B, Guidi V, Bellutti P, Giberti A, Gherardi S, et al. Metal sulfides as sensing materials for chemoresistive gas sensors. Sensors. 2016;16(3):296.

    Article  ADS  Google Scholar 

  6. Long G, Guo Y, Li W, Tang Q, Zu X, Ma J, et al. Surface acoustic wave ammonia sensor based on ZnS mucosal-like nanostructures. Microelectron Eng. 2020;222:111201.

    Article  Google Scholar 

  7. Shinde MS, Swapna Samanta S, Sonawane MS, Ahirrao PB, Patil RS. Gas sensing properties of nanostructured ZnS thin films. J Nano Adv Mater. 2015;3(2):99.

    Google Scholar 

  8. Maticiuc N, Kukk M, Spalatu N, Potlog T, Krunks M, Valdna V, et al. Comparative study of CdS films annealed in neutral, oxidizing and reducing atmospheres. Energy Procedia. 2014;44:77–84.

    Article  Google Scholar 

  9. Navale ST, Mane AT, Chougule MA, Shinde NM, Kim J, Patil VB. Highly selective and sensitive CdS thin film sensors for detection of NO2 gas. RSC Adv. 2014;4(84):44547–54.

    Article  ADS  Google Scholar 

  10. Nemade KR, Waghuley SA. Ultra-violet C absorption and LPG sensing study of zinc sulphide nanoparticles deposited by a flame-assisted spray pyrolysis method. J Taibah Univ Sci. 2016;10(3):437–41.

    Article  Google Scholar 

  11. Liu X-H, Yin P-F, Kulinich SA, Zhou Y-Z, Mao J, Ling T, et al. Arrays of ultrathin CdS Nanoflakes with high-energy surface for efficient gas detection. ACS Appl Mater Interfaces. 2016;9(1):602–9.

    Article  Google Scholar 

  12. Saxena N, Kumar P, Gupta V. CdS nanodroplets over silica microballs for efficient room-temperature LPG detection. Nanoscale Adv. 2019;1(6):2382–91.

    Article  ADS  Google Scholar 

  13. Dzhurkov V, Levi Z, Nesheva D, Hristova-Vasileva T. Room temperature sensitivity of ZnSe nanolayers to ethanol vapours. J Phys Conf Ser. 2019;1186(1):012023.

    Article  Google Scholar 

  14. Al-Hilli BA. The effect of cadmium selenide thin film thickness on carbon monoxide gas sensing properties prepared by plasma DC-sputtering technique. Iraqi J Sci. 2018;59:2234–41.

    Google Scholar 

  15. Fabbri B, Gaiardo A, Guidi V, Malagù C, Giberti A. Photo-activation of cadmium sulfide films for gas sensing. Procedia Eng. 2014;87:140–3.

    Article  Google Scholar 

  16. Xing R, Xue Y, Liu X, Liu B, Miao B, Kang W, et al. Mesoporous ZnS hierarchical nanostructures: facile synthesis, growth mechanism and application in gas sensing. CrystEngComm. 2012;14(23):8044–8.

    Article  Google Scholar 

  17. Xiao J, Song C, Song M, Dong W, Li C, Yin Y. Preparation and gas sensing properties of hollow ZnS microspheres. J Nanosci Nanotechnol. 2016;16(3):3026–9.

    Article  Google Scholar 

  18. Hu P, Gong G, Zhan F, Zhang Y, Li R, Cao Y. The hydrothermal evolution of the phase and shape of ZnS nanostructures and their gas-sensing properties. Dalton Trans. 2016;45(6):2409–16.

    Article  Google Scholar 

  19. Zhang N, Ma X, Han J, Ruan S, Chen Y, Zhang H, et al. Synthesis of sea urchin-like microsphere of CdS and its gas sensing properties. Mater Sci Eng B. 2019;243:206–13.

    Article  Google Scholar 

  20. Guo W, Ma J, Pang G, Wei C, Zheng W. Synergistic effect of the reducing ability and hydrogen bonds of tested gases: highly orientational CdS dendrite sensors. J Mater Chem A. 2013;2(4):1032–8.

    Article  Google Scholar 

  21. Fu X, Liu J, Wan Y, Zhang X, Meng F, Liu J. Preparation of a leaf-like CdS micro−/nanostructure and its enhanced gas-sensing properties for detecting volatile organic compounds. J Mater Chem. 2012;22(34):17782–91.

    Article  Google Scholar 

  22. Sonker RK, Yadav BC, Gupta V, Tomar M. Synthesis of CdS nanoparticle by sol-gel method as low temperature NO2 sensor. Mater Chem Phys. 2020;239:121975.

    Article  Google Scholar 

  23. Korotcenkov G. Metal oxides for solid-state gas sensors: what determines our choice? Mater Sci Eng B. 2007;139(1):1–23.

    Article  Google Scholar 

  24. Kurtin S, McGill TC, Mead CA. Fundamental transition in the electronic nature of solids. Phys Rev Lett. 1969;22(26):1433.

    Article  ADS  Google Scholar 

  25. Giberti A, Casotti D, Cruciani G, Fabbri B, Gaiardo A, Guidi V, et al. Electrical conductivity of CdS films for gas sensing: selectivity properties to alcoholic chains. Sens Actuators B. 2015;207(PartA):504–10.

    Article  Google Scholar 

  26. Zhang L, Wang H, Guo W, Ma J. Sensitive NO sensor based CdS microparticles assembled by nanoparticles. RSC Adv. 2016;6(51):45386–91.

    Article  ADS  Google Scholar 

  27. Yamazoe N. New approaches for improving semiconductor gas sensors. Sens Actuator B. 1991;5(1–4):7–19.

    Article  Google Scholar 

  28. Gurlo A. Nanosensors: towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies. Nanoscale. 2011;3(1):154–65.

    Article  ADS  Google Scholar 

  29. Smyntyna VA, Gerasutenko V, Kashulis S, Mattogno G, Reghini S. The causes of thickness dependence of CdSe and CdS gas-sensor sensitivity to oxygen. Sens Actuators B. 1994;19(1–3):464–5.

    Article  Google Scholar 

  30. Smyntyna V, Gerasutenko V, Golovanov V, Kačiulis S, Mattogno G, Viticoli S. Surface spectroscopy study of CdSe and CdS thin-film oxygen sensors. Sens Actuators B. 1994;22(3):189–94.

    Article  Google Scholar 

  31. Yamazoe N, Sakai G, Shimanoe K. Oxide Semiconductor Gas Sensors. Catal Surv from Asia. 2003;7(1):63–75.

    Article  Google Scholar 

  32. Miller DR, Akbar SA, Morris PA. Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens Actuators B. 2014;204. Elsevier:250–72.

    Article  Google Scholar 

  33. Degler D, Weimar U, Barsan N. Current understanding of the fundamental mechanisms of doped and loaded semiconducting metal-oxide-based gas sensing materials. ACS Sensors. 2019;4(9):2228–49.

    Article  Google Scholar 

  34. Li Z, Yao ZJ, Haidry AA, Plecenik T, Xie LJ, Sun LC, et al. Resistive-type hydrogen gas sensor based on TiO2: a review. Int J Hydrog Energy. 2018;43(45):21114–32.

    Article  Google Scholar 

  35. Huang Z, Wei D, Wang T, Jiang W, Liu F, Chuai X, et al. Excellent gas sensing of hierarchical urchin-shaped Zn doped cadmium sulfide. J Alloys Compd. 2019;773:299–304.

    Article  Google Scholar 

  36. Kim HJ, Il Choi K, Kim KM, Na CW, Lee JH. Highly sensitive C2H5OH sensors using Fe-doped NiO hollow spheres. Sens Actuators B. 2012;171–172:1029–37.

    Article  Google Scholar 

  37. Mondal S. LPG sensing property of nickel doped CdS thin film synthesised by silar method. Adv Mater Process Technol. 2020;8:344. https://doi.org/10.1080/2374068X.2020.1809234.

    Article  Google Scholar 

  38. Zhong F, Wu Z, Guo J, Jia D. Ni-doped ZnS nanospheres decorated with Au nanoparticles for highly improved gas sensor performance. Sensors. 2018;18(9):2882.

    Article  ADS  Google Scholar 

  39. Lin F, Lai Z, Zhang L, Huang Y, Li F, Chen P, et al. Fluorometric sensing of oxygen using manganese(II)-doped zinc sulfide nanocrystals. Microchim Acta. 2020;187(1):1–9.

    Article  Google Scholar 

  40. Park S, An S, Ko H, Lee S, Lee C. Synthesis, structure, and UV-enhanced gas sensing properties of au-functionalized ZnS nanowires. Sens Actuators B. 2013;188:1270–6.

    Article  Google Scholar 

  41. Park S, An S, Mun Y, Lee C. UV-activated gas sensing properties of ZnS nanorods functionalized with Pd. Curr Appl Phys. 2014;14(SUPPL. 1):S57–62.

    Article  ADS  Google Scholar 

  42. Prokopenko SL, Gunya GM, Makhno SM, Gorbyk PP. Room-temperature gas sensor based on semiconductor nanoscale heterostructures ZnS/CdS. Him Fiz ta Tehnol Poverhni. 2017;8(4):432–8.

    Article  Google Scholar 

  43. Chizhov AS, Rumyantseva MN, Vasiliev RB, Filatova DG, Drozdov KA, Krylov IV, et al. Visible light activation of room temperature NO2 gas sensors based on ZnO, SnO2 and In2O3 sensitized with CdSe quantum dots. Thin Solid Films. 2016;618:253–62.

    Article  ADS  Google Scholar 

  44. Ding P, Xu D, Dong N, Chen Y, Xu P, Zheng D, et al. A high-sensitivity H2S gas sensor based on optimized ZnO-ZnS nano-heterojunction sensing material. Chinese Chem Lett. 2020;31(8):2050–4.

    Article  Google Scholar 

  45. Hieu NM, Van Lam D, Hien TT, Chinh ND, Quang ND, Hung NM, et al. ZnTe-coated ZnO nanorods: hydrogen sulfide nano-sensor purely controlled by pn junction. Mater Des. 2020;191:108628.

    Article  Google Scholar 

  46. Zhang H, Jin Z, Da Xu M, Zhang Y, Huang J, Cheng H, et al. Enhanced isopropanol sensing performance of the CdS nanoparticle decorated ZnO porous nanosheets-based gas sensors. IEEE Sensors J. 2021;21(12):13041–7.

    Article  ADS  Google Scholar 

  47. Liu W, Gu D, Li X. Ultrasensitive NO2 detection utilizing mesoporous ZnSe/ZnO heterojunction-based chemiresistive-type sensors. ACS Appl Mater Interfaces. 2019;11(32):29029–40.

    Article  Google Scholar 

  48. Tsai YS, Chou TW, Xu CY, Chang Huang W, Lin CF, Wu YCS, et al. ZnO/ZnS core-shell nanostructures for hydrogen gas sensing performances. Ceram Int. 2019;45(14):17751–7.

    Article  Google Scholar 

  49. Arunraja L, Thirumoorthy P, Karthik A, Subramanian R, Rajendran V. Investigation and characterization of ZnO/CdS nanocomposites using chemical precipitation method for gas sensing applications. J Mater Sci Mater Electron. 2017;28(23):18113–20.

    Article  Google Scholar 

  50. Šetka M, Bahos FA, Chmela O, Matatagui D, Gràcia I, Drbohlavová J, et al. Cadmium telluride/polypyrrole nanocomposite based love wave sensors highly sensitive to acetone at room temperature. Sens Actuators B. 2020;321:128573.

    Article  Google Scholar 

  51. Kim D, Park KM, Shanmugam R, Yoo B. Electrochemically decorated ZnTe nanodots on single-walled carbon nanotubes for room-temperature NO2 sensor application. J Nanosci Nanotechnol. 2014;14(11):8248–52.

    Article  Google Scholar 

  52. Qin N, Xiang Q, Zhao H, Zhang J, Xu J. Evolution of ZnO microstructures from hexagonal disk to prismoid, prism and pyramid and their crystal facet-dependent gas sensing properties. CrystEngComm. 2014;16(30):7062–73.

    Article  Google Scholar 

  53. Patel NG, Panchal CJ, Makhija KK. Use of cadmium selenide thin films as a carbon dioxide gas sensor. Cryst Res Technol. 1994;29(7):1013–20.

    Article  Google Scholar 

  54. Maserati L, Moreels I, Prato M, Krahne R, Manna L, Zhang Y. Oxygen sensitivity of atomically passivated CdS nanocrystal films. ACS Appl Mater Interfaces. 2014;6(12):9517–23.

    Article  Google Scholar 

  55. Nesheva D, Aneva Z, Reynolds S, Main C, Fitzgerald AG. Preparation of micro -and nanocrystalline CdSe and CdS thin films suitable for sensor applications. J Optoelectron Adv Mater. 2006;8(6):2120–5.

    Google Scholar 

  56. Laatar F, Harizi A, Zarroug A, Ghrib M, Hassen M, Gaidi M, et al. Novel CdSe nanorods/porous anodic alumina nanocomposite-based ethanol sensor: sensitivity enhancement by visible light illumination. J Mater Sci Mater Electron. 2017;28(16):12259–67.

    Article  Google Scholar 

  57. Podgornyi SO, Demeshko IP, Podgornaya OT, Lukoyanova OV, Skutin ED, Fedotova KI. Cadmium telluride nanofilms application in carbon monoxide detection. In: Proceedings of Dyn Syst Mech Mach Dyn, 15–17 November 2016, Omsk, p. 16602519.

    Google Scholar 

  58. Giberti A, Fabbri B, Gaiardo A, Guidi V, Malagù C. Resonant photoactivation of cadmium sulfide and its effect on the surface chemical activity. Appl Phys Lett. 2014;104(22):222102.

    Article  ADS  Google Scholar 

  59. Bube RH. Surface photoconductivity in cadmium sulfide crystals. J Chem Phys. 2004;21(8):1409.

    Article  ADS  Google Scholar 

  60. Miremadi BK, Colbow K, Harima Y. A CdS photoconductivity gas sensor as an analytical tool for detection and analysis of hazardous gases in the environment. Rev Sci Instrum. 1998;68(10):3898.

    Article  ADS  Google Scholar 

  61. Park S, Kim S, Ko H, Lee C. Light-enhanced gas sensing of ZnS-core/ZnO-shell nanowires at room temperature. J Electroceram. 2014;33(1–2):75–81.

    Article  Google Scholar 

  62. Yang Z, Guo L, Zu B, Guo Y, Xu T, Dou X, et al. CdS/ZnO core/shell nanowire-built films for enhanced photodetecting and optoelectronic gas-sensing applications. Adv Opt Mater. 2014;2(8):738–45.

    Google Scholar 

  63. Chizhov AS, Rumyantseva MN, Vasiliev RB, Filatova DG, Drozdov KA, Krylov IV, et al. Visible light activated room temperature gas sensors based on nanocrystalline ZnO sensitized with CdSe quantum dots. Sens Actuators B. 2014;205:305–12.

    Article  Google Scholar 

  64. Geng X, Zhang C, Debliquy M. Cadmium sulfide activated zinc oxide coatings deposited by liquid plasma spray for room temperature nitrogen dioxide detection under visible light illumination. Ceram Int. 2016;42(4):4845–52.

    Article  Google Scholar 

  65. Park S, Kim S, Ko H, Lee C. Light assisted room temperature ethanol gas sensing of ZnO-ZnS nanowires. J Nanosci Nanotechnol. 2014;14(12):9025–8.

    Article  Google Scholar 

  66. Wu B, Lin Z, Sheng M, Hou S, Xu J. Visible-light activated ZnO/CdSe heterostructure-based gas sensors with low operating temperature. Appl Surf Sci. 2016;360:652–7.

    Article  ADS  Google Scholar 

  67. Dengo N, De Fazio AF, Weiss M, Marschall R, Dolcet P, Fanetti M, et al. Thermal evolution of ZnS nanostructures: effect of oxidation phenomena on structural features and photocatalytical performances. Inorg Chem. 2018;57(21):13104–14.

    Article  Google Scholar 

  68. Shanmugam N, Cholan S, Kannadasan N, Sathishkumar K, Viruthagiri G. Effect of annealing on the ZnS nanocrystals prepared by chemical precipitation method. J Nanomater. 2013;2013:351798.

    Google Scholar 

  69. Schultze D, Steinike U, Kussin J, Kretzschmar U. Thermal oxidation of ZnS modifications sphalerite and wurtzite. Cryst Res Technol. 1995;30(4):553–8.

    Article  Google Scholar 

  70. Murugadoss G. Synthesis, optical, structural and thermal characterization of Mn2+ doped ZnS nanoparticles using reverse micelle method. J Lumin. 2011;131(10):2216–23.

    Article  Google Scholar 

  71. Trenczek-Zajac A. Thermally oxidized CdS as a photoactive material. New J Chem. 2019;43(23):8892–902.

    Article  Google Scholar 

  72. Eom NSA, Kim TS, Choa YH, Kim WB, Kim BS. Surface oxidation behaviors of Cd-rich CdSe quantum dot phosphors at high temperature. J Nanosci Nanotechnol. 2014;14(10):8024–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stella Vallejos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vallejos, S., Blackman, C. (2023). II-VI Semiconductor-Based Thin Film Electric and Electronic Gas Sensors. In: Korotcenkov, G. (eds) Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors. Springer, Cham. https://doi.org/10.1007/978-3-031-24000-3_7

Download citation

Publish with us

Policies and ethics