Skip to main content
Log in

Patterning protein conjugates into organized microarrays with diphenylalanine peptide nanotubes self-assembled on graphite and gold electrode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Controlling the arrangement and organization of self-assembled peptide nanostructures is a crucial step in developing Lab-on-a-Chip devices based on biomolecular assembly. Here, we report a simple approach to achieve the vertically aligned assembly of diphenylalanine (FF) peptide by casting stock solution of FF peptide on gold and graphite modified silicones. We show at the first time the formation of highly ordered interlaced arrays of vertical flower crystals and peptide nanotubes (PNTs) on thiolated gold and graphite. Furthermore, their chemical stability was investigated in PBS buffer after 3 h to gain insight into the stability of modified electrodes upon cycling. Interestingly, a highly ordered hierarchical morphology was obtained on the substrate surface. Hierarchical morphology resembles a square lattice, dendritic forest, and three-dimensional packed arrays. The results confirmed that PNTs not only preserves its chemical stability but transform into hierarchical arrays in PBS which is very beneficial for their applications in bioelectrochemical and nanoelectronics devices. As an example, the significantly enhanced arrangement of antibody CD3 was also demonstrated at the PNTs modified gold electrode compared to unordered modified electrodes. The simple and mild approach described here opens a new path for the fabrication of organized self-assembled peptide bionanostructure arrays allowing the fabrication of a variety of microarrays used in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Fatanat Didar, A.M. Foudeh, M. Tabrizian, Patterning multiplex protein microarrays in a single microfluidic channel. Anal. Chem. 84, 1012–1018 (2012)

    Article  Google Scholar 

  2. E. Tayerani Nicknejad, S.M. Ghoreishi, N. Habibi, Electrospinning of cross-linked magnetic chitosan nanofibers for protein release. AAPS PharmSciTech 16(6), 1480–1486 (2015)

    Article  Google Scholar 

  3. J.D. Hatgerink, E. Beniash, S.I. Stupp, Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684–1688 (2001)

    Article  Google Scholar 

  4. N Habibi, N. Kamaly, A. Memic, H. Shafiee, Self-assembled peptide-based nanostructures: smart nanomaterials toward targeted drug delivery. Nano Today, 11(1), 41–60 (2016)

    Article  Google Scholar 

  5. N. Habibi, Immobilization of bacterial S-layer proteins from Caulobacter crescentus on iron oxide-based nanocomposite: synthesis and spectroscopic characterization of zincite-coated Fe2O3 nanoparticles. Spectro Acta A 125, 359–362 (2014)

    Article  Google Scholar 

  6. X. Yan, P. Zhua, J. Li, Self-assembly and application of diphenylalanine-based nanostructures. Chem. Soc. Rev. 39, 1877–1890 (2010)

    Article  Google Scholar 

  7. T. Zohrabi, N. Habibi, Dendritic peptide nanostructures formed from self-assembly of di-L-phenylalanine extracted from Alzheimer’s β-amyloid poly peptides: insights into their assembly process. Int. J. Peptide Res. Ther. 21, 423–431 (2015)

    Article  Google Scholar 

  8. M. Reches, E. Gazit, Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300, 625–627 (2003)

    Article  Google Scholar 

  9. J. Ryu, S.Y. Lim, C.B. Park, Photoluminescent peptide nanotubes. Adv. Mater. 21, 1577–1581 (2009)

    Article  Google Scholar 

  10. C.A.E. Hauser, S. Zhang, Peptides as biological semiconductors. Nature 468, 516–517 (2010)

    Article  Google Scholar 

  11. N. Kol, L. Adler-Abramovich, D. Barlam, R.Z. Shneck, E. Gazit, I. Rousso, Self-assembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures. Nano Lett. 5, 1343–1346 (2005)

    Article  Google Scholar 

  12. L. Adler-Abramovich, M. Reches, V.L. Sedman, S. Allen, S.J.B. Tendler, E. Gazit, Thermal and chemical stability of diphenylalanine peptide nanotubes: implications for nanotechnological applications. Langmuir 22, 1313–1320 (2006)

    Article  Google Scholar 

  13. J. Ryu, S.-W. Kim, K. Kang, C.B. Park, Mineralization of self-assembled peptide nanofibers for rechargeable lithium ion batteries. Adv. Mater. 22, 5537–5541 (2010)

    Article  Google Scholar 

  14. B.-W. Park, R. Zheng, K.-A. Ko, B.D. Cameron, D.-Y. Yoon, D.-S.A. Kim, Novel glucose biosensor using bi-enzyme incorporated with peptide nanotubes. Biosens. Bioelectron. 38, 295–301 (2012)

    Article  Google Scholar 

  15. M. Reches, E. Gazit, Controlled patterning of aligned self-assembled peptide nanotubes. Nat. Nanotechnol. 1, 195–200 (2006)

    Article  Google Scholar 

  16. J. Ryu, C.B. Park, High-temperature self-assembly of peptides into vertically well-aligned nanowires by aniline vapor. Adv. Mater. 20, 3754–3758 (2008)

    Article  Google Scholar 

  17. L. Adler-Abramovich, D. Aronov, P. Beker, M. Yevnin, S. Stempler, L. Buzhansky, G. Rosenman, E. Gazit, Self-assembled arrays of peptide nanotubes by vapour deposition. Nat. Nanotechnol. 4, 849–854 (2009)

    Article  Google Scholar 

  18. P. Li, X. Chen, W. Yang, Graphene-induced self-assembly of peptides into macroscopic-scale organized nanowire arrays for electrochemical NADH sensing. Langmuir 29, 8629–8635 (2013)

    Article  Google Scholar 

  19. N. Habibi, Functional biocompatible magnetite–cellulose nanocomposite fibrous networks: characterization by fourier transformed infrared spectroscopy, X-ray powder diffraction and field emission scanning electron microscopy analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 136, 1450–1453 (2015)

    Article  Google Scholar 

  20. N. Habibi, B. Karimi, Fabrication and characterization of zinc oxide nanoparticle coated magnetic iron oxide: Effect of S-layers adsorption on surface of oxide. J. Ind. Eng. Chem. 20(5), 3033–3036 (2014)

    Article  Google Scholar 

  21. N. Habibi, Preparation of biocompatible magnetite-carboxymethyl cellulose nanocomposite: characterization of nanocomposite by FTIR, XRD, FESEM and TEM. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 131, 55–58 (2014)

    Article  Google Scholar 

  22. T. Zohrabi, N. Habibi, A. Zarrabi, M. Fanaei, L.Y. Lee, Diphenylalanine peptide nanotubes self-assembled on functionalized metal surfaces for potential application in drug-eluting stent. J. Biomed. Mater. Res. Part A 104(9), 2280–2290 (2016)

    Article  Google Scholar 

  23. P. Kumaraswamy, R. Lakshmanan, S. Sethuraman, U.M. Krishnan, Self-assembly of peptides: influence of substrate, pH and medium on the formation of supramolecular assemblies. R. Soc. Chem. doi:10.1039/c0sm00897d

  24. N. Habibi, F.C. Soumetz, M. Guillaneli, L. Pastorino, O. Herrera, F. Subrana, R. Raiteri, C. Ruggeiro, Self-assembly and recrystallization of bacterial S-layer proteins of Bacillus sphaericus and Bacillus thuringiensis on silicone, mica and quartz crystal supports. Eng. Med. Biol. Soc. (EMBC) 2010, 3139–3742 (2010)

    Google Scholar 

  25. L. Soleymani, Z. Fang, X. Sun, H. Yang, B.J. Taft, E.H. Sargent, Nanostructuring of patterned microelectrodes to enhance the sensitivity of electrochemical nucleic acids detection. Angew. Chem. Int. Ed. 48, 1–5 (2009)

    Article  Google Scholar 

  26. T.H. Han, J.K. Oh, G.-J. Lee, S.-I. Pyun, S.O. Kim, Hierarchical assembly of diphenylalanine into dendritic nanoarchitectures. Colloids Surf. B 79, 440–445 (2010)

    Article  Google Scholar 

  27. V.V. Korolkov, S. Allen, C.J. Roberts, Surface mediated L-phenylalanyl-Lphenylalanine assembly into large dendritic. Faraday Discuss 166, 257–266 (2013)

    Article  Google Scholar 

  28. E. Chan Choa, J.-W. Choi, M. Lee, K.-K. Koo, Fabrication of an electrochemical immunosensor with self-assembled peptide nanotubes. Colloids Surf. A Physicochem. Eng. Aspects 313–314, 95–99 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neda Habibi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moini, E., Dadkhah, A.A., Allafchian, A. et al. Patterning protein conjugates into organized microarrays with diphenylalanine peptide nanotubes self-assembled on graphite and gold electrode. J Mater Sci: Mater Electron 28, 16910–16920 (2017). https://doi.org/10.1007/s10854-017-7610-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7610-2

Navigation