Skip to main content
Log in

2D bio-nanostructures fabricated by supramolecular self-assembly of protein, peptide, or peptoid

  • Review
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Biomolecular self-assembly is a promising strategy for fabricating two-dimensional (2D) nanostructures such as sheets, films, lattices, or membranes. In this paper, we summarize the recent development of 2D bio-nanostructures that are formed by supramolecular self-assembly of protein, peptide, or peptoid, respectively. Specific focus is given on the formation mechanisms and the structures as well as functionality of the 2D bio-nanostructures. Besides, some typical applications of 2D bio-nanostructures have been listed. At last, the potential research direction of 2D bio-nanostructures is discussed.

Recent developments of 2D bio-nanostructures formed by supramolecular self-assembly of protein, peptide, or peptoid are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. You J, Li MJ, Ding BB, Wu XC, Li CX (2017) Crab chitin-based 2d soft nanomaterials for fully biobased electric devices. Adv Mater 29:1606895

    Article  Google Scholar 

  2. Liu W-D, Yang B (2017) Patterned surfaces for biological applications: a new platform using two dimensional structures as biomaterials. Chin Chem Lett 28:675–690

    Article  Google Scholar 

  3. Choi IY, Lee J, Ahn H, Lee J, Choi HC, Park MJ (2015) High-conductivity two-dimensional polyaniline nanosheets developed on ice surfaces. Angew Chem Int Ed 54:1–6

    Article  Google Scholar 

  4. Butler SZ, Hollen SM, Cao L, Cui Y, Gupta JA, Gutiérrez HR, Heinz TF, Hong SS, Huang J, Ismach AF, Johnston-Halperin E, Kuno M, Plashnitsa VV, Robinson RD, Ruoff RS, Salahuddin S, Shan J, Shi L, Spencer OMG, Terrones M, Wind W, Goldberger JE (2013) Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7:2898–2926

    Article  Google Scholar 

  5. Fang Y, Lv Y, Tang J, Wu H, Jia D, Feng D, Kong B, Wang Y, Elzatahry AA, Al-Dahyan D, Zhang Q, Zheng G, Zhao D (2015) Growth of single-layered two-dimensional mesoporous polymer/ carbon films by self-assembly of monomicelles at the interfaces of various substrates. Angew Chem Int Ed 127:8545–8549

    Article  Google Scholar 

  6. Zhang WH, Jiang BJ, Yang P (2016) Proteins as functional interlayer in organic field-effect transistor. Chin Chem Lett 27:1339–1344

    Article  Google Scholar 

  7. Wei T, Zhan WJ, Cao LM, Hu CM, Qu YC, Yu Q, Chen H (2016) Multifunctional and regenerable antibacterial surfaces fabricated by a universal strategy. ACS Appl Mater Interfaces 8:30048–30057

    Article  Google Scholar 

  8. Cao LM, Qu YC, Hu CM, Wei T, Zhan WJ, Y Q CH (2016) A universal and versatile approach for surface biofunctionalization: layer-by-layer assembly meets host–guest chemistry. Adv Mater Interfaces 3:1600600

    Article  Google Scholar 

  9. Wei G, Su Z, Reynolds NP, Arosio P, Hamley IW, Gazit E, Mezzenga R (2017) Self-assembling peptide and protein amyloids: from structure to tailored function in nanotechnology. Chem Soc Rev 46:4661–4708

    Article  Google Scholar 

  10. Dohno C, Makishi S, Nakatani K, Contera S (2017) Amphiphilic DNA tiles for controlled insertion and 2D assembly on fluid lipid membranes: effect on mechanical properties. Nanoscale 9:3051–3058

    Article  Google Scholar 

  11. Yan X, Zhu P, Li J (2010) Self-assembly and application of diphenylalanine-based nanostructures. Chem Soc Rev 39:1877–1890

    Article  Google Scholar 

  12. Moll D, Huber C, Schlegel B, Pum D, Sleytr UB, Sára M (2002) S-layer-streptavidin fusion proteins as template for nanopatterned molecular arrays. Proc Natl Acad Sci 99:14646–14651

    Article  Google Scholar 

  13. Wang XY, Wang DB, Zhang ZP, Bi LJ, Zhang JB, Ding W, Zhang XE (2015) A S-layer protein of bacillus anthracis as a building block for functional protein arrays by in vitro self-assembly. Small 11:5826–5832

    Article  Google Scholar 

  14. Rad B, Haxton TK, Shon A, Shin S-H, Whitelam S, Ajo-Franklin CM (2015) Ion-specific control of the self-assembly dynamics of a nanostructured protein lattice. ACS Nano 9:180–190

    Article  Google Scholar 

  15. Matthaei JF, DiMaio F, Richards JJ, Pozzo LD, Baker D, Baneyx F (2015) Designing two-dimensional protein arrays through fusion of multimers and interface mutations. Nano Lett 15:5235–5239

    Article  Google Scholar 

  16. Brodin JD, Ambroggio XI, Tang C, Parent KN, Baker TS, Tezcan FA (2012) Metal-directed, chemically tunable assembly of one-, two- and three-dimensional crystalline protein arrays. Nat Chem 4:375–382

    Article  Google Scholar 

  17. Brodin JD, Carr JR, Sontz PA, Tezcan FA (2014) Exceptionally stable, redox-active supramolecular protein assemblies with emergent properties. Proc Natl Acad Sci 111:2897–2902

    Article  Google Scholar 

  18. Bai YS, Luo Q, Zhang W, Miao L, Xu JY, Li HB, Liu JQ (2013) Highly ordered protein nanorings designed by accurate control of glutathione S-transferase self-assembly. J Am Chem Soc 135:10966–10969

    Article  Google Scholar 

  19. Knowles TPJ, Oppenheim TW, Buell AK, Chirgadze DY, Welland ME (2010) Nanostructured films from hierarchical self-assembly of amyloidogenic proteins. Nat Nanotechnol 5:204–207

    Article  Google Scholar 

  20. Yang P (2012) Direct biomolecule binding on nonfouling surfaces via newly discovered supramolecular self-assembly of lysozyme under physiological conditions. Macromol Biosci 12:1053–1059

    Article  Google Scholar 

  21. Wu ZF, Yang P (2014) Simple multipurpose surface functionalization by phase transited protein adhesion. Adv Mater Interfaces 2:1400401

    Article  Google Scholar 

  22. Wu Q, Gao AT, Tao F, Yang P (2018) Understanding biomolecular crystallization on amyloid like superhydrophobic biointerface. Adv Mater Interfaces 5:1701065

    Article  Google Scholar 

  23. Gao AT, Wu Q, Wang DH, Ha Y, Chen ZJ, Yang P (2016) A superhydrophobic surface templated by protein self-assembly and emerging application toward protein crystallization. Adv Mater 28:579–587

    Article  Google Scholar 

  24. Wang DH, Ha Y, Gu J, Li Q, Zhang LL, Yang P (2016) 2D protein supramolecular nanofilm with exceptionally large area and emergent functions. Adv Mater 28:7414–7423

    Article  Google Scholar 

  25. Gu J, Miao ST, Yan ZG, Yang P (2018) Multiplex binding of amyloid-like protein nanofilm to different material surfaces. Colloid Interface Sci Commun 22:42–48

    Article  Google Scholar 

  26. Ha Y, Yang J, Tao F, Wu Q, Song YJ, Wang HR, Zhang X, Yang P (2018) Phase-transited lysozyme as a universal route to bioactive hydroxyapatite crystalline film. Adv Funct Mater 28:1704476

    Article  Google Scholar 

  27. Kim S, Marelli B, Brenckle MA, Mitropoulos AN, Gil E-S, Tsioris K, Tao H, Kaplan DL, Omenetto FG (2014) All-water-based electron-beam lithography using silk as a resist. Nat Nanotech 9:306–310

    Article  Google Scholar 

  28. Bolisetty S, Arcari M, Adamcik J, Mezzenga R (2015) Hybrid amyloid membranes for continuous flow catalysis. Langmuir 31:13867–13873

    Article  Google Scholar 

  29. Zhang SG, Holmes T, Lockshin C, Rich A (1993) Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc Natl Acad Sci 90:3334–3338

    Article  Google Scholar 

  30. Hamley IW, Dehsorkhi A, Castelletto V (2013) Self-assembled arginine-coated peptide nanosheets in water. Chem Commun 49:1850–1852

    Article  Google Scholar 

  31. Hamley IW, Hutchinson J, Kirkham S, Castelletto V, Kaur A, Reza M, Ruokolainen J (2016) Nanosheet formation by an anionic surfactant-like peptide, and modulation of self-assembly through ionic complexation. Langmuir 32(40):10387–10393

    Article  Google Scholar 

  32. Pan Y-X, Liu C-J, Zhang S, Yu Y, Dong MD (2012) 2D-oriented self-assembly of peptide induced by hydrated electrons. Chem Eur J 18:14614–14617

    Article  Google Scholar 

  33. Dai B, Li D, Xi WH, Luo F, Zhang X, Zou M, Cao M, Hu J, Wang WY, Wei GH, Zhang Y, Liu C (2015) Tunable assembly of amyloid-forming peptides into nanosheets as a retrovirus carrier. Proc Natl Acad Sci 112:2996–3001

    Article  Google Scholar 

  34. Jang H-S, Lee J-H, Park Y-S, Kim Y-O, Park J, Yang T-Y, Jin K, Lee J, Park S, You JM, Jeong K-W, Shin A, Oh I-S, Kwon M-K, Kim Y-I, Cho H-H, Han HN, Kim Y, Chang YH, Paik SR, Nam KT, Lee Y-S (2014) Tyrosine-mediated two-dimensional peptide assembly and its role as a bio-inspired catalytic scaffold. Nat Commun 5:3665

    Article  Google Scholar 

  35. Lee J, Choe IR, Kim N-K, Kim W-J, Jang H-S, Lee Y-S, Nam KT (2016) Water-floating giant nanosheets from helical peptide pentamers. ACS Nano 10:8263–8270

    Article  Google Scholar 

  36. Jiang T, Xu C, Liu Y, Liu Z, Wall JS, Zuo X, Lian T, Salaita K, Ni C, Pochan D, Conticello VP (2014) Structurally defined nanoscale sheets from self-assembly of collagen-mimetic peptides. J Am Chem Soc 136:4300–4308

    Article  Google Scholar 

  37. Jiang T, Xu C, Zuo X, Conticello VP (2014) Structurally homogeneous nanosheets from self-assembly of a collagen-mimetic peptide. Angew Chem Int Ed 53:8367–8371

    Article  Google Scholar 

  38. Jiang T, Vail OA, Jiang ZG, Zuo XB, Conticello VP (2015) Rational design of multilayer collagen nanosheets with compositional and structural control. J Am Chem Soc 137:7793–7802

    Article  Google Scholar 

  39. Yu XL, Xiao JZ, Dang FQ (2015) Surface modification of poly (dimethylsiloxane) using ionic complementary peptides to minimize nonspecific protein adsorption. Langmuir 31:5891–5898

    Article  Google Scholar 

  40. Pan Y-X, Cong H-P, Men Y-L, Xin S, Sun Z-Q, Liu C-J, Yu S-H (2015) Peptide self-assembled biofilm with unique electron transfer flexibility for highly efficient visible-light-driven photocatalysis. ACS Nano 9:11258–11265

    Article  Google Scholar 

  41. Sun J, Zuckermann RN (2013) Peptoid polymers: a highly designable bioinspired material. ACS Nano 7:4715–4732

    Article  Google Scholar 

  42. Lau KHA (2014) Peptoids for biomaterials science. Biomater Sci 2:627–633

    Article  Google Scholar 

  43. Kirshenbaum K, Barron AE, Goldsmith RA, Armand P, Bradley EK, Truong KTV, Dill KA, Cohen FE, Zuckermann RN (1998) Sequence-specific polypeptoids: a diverse family of heteropolymers with stable secondary structure. Proc Natl Acad Sci 95:4303–4308

    Article  Google Scholar 

  44. Tran H, Gael SL, Connolly MD, Zuckermann RN (2011) Solid-phase submonomer synthesis of peptoid polymers and their self-assembly into highly-ordered nanosheets. J Vis Exp 57:1–7

    Google Scholar 

  45. Nam KT, Shelby SA, Choi PH, Marciel AB, Chen R, Tan L, Chu TK, Mesch RA, Lee B-C, Connolly MD, Kisielowski C, Zuckermann RN (2010) Free-floating ultrathin two-dimensional crystals from sequence-specific peptoid polymers. Nat Mater 9:454–460

    Article  Google Scholar 

  46. Jin H, Jiao F, Daily MD, Chen Y, Yan F, Ding Y, Zhang X, Robertson EJ, Baer MD, Chen C (2016) Highly stable and self-repairing membrane-mimetic 2D nanomaterials assembled from lipid-like peptoids. Nat Commun 7:12252

    Article  Google Scholar 

  47. Jiao F, Chen Y, Jin H, He P, Chen C-L, Yoreo JJD (2016) Self-repair and patterning of 2D membrane-like peptoid materials. Adv Funct Mater 26:8960–8967

    Article  Google Scholar 

  48. Shi ZK, Wei YH, Zhu CH, Sun J, Li ZB (2018) Crystallization-driven two-dimensional nanosheet from hierarchical self-assembly of polypeptoid-based diblock copolymers. Macromolecules 51(16):6344–6351

    Article  Google Scholar 

  49. Sanii B, Kudirka R, Cho A, Venkateswaran N, Olivier GK, Olson AM, Tran H, Harada RM, Tan L, Zuckermann RN (2011) Shaken, not stirred: collapsing a peptoid monolayer to produce free-floating, stable nanosheets. J Am Chem Soc 133:20808–20815

    Article  Google Scholar 

  50. Kudirka R, Tran H, Sanii B, Nam KT, Choi PH, Venkateswaran N, Chen R, Whitelam S, Zuckermann RN (2011) Folding of a single-chain, information-rich polypeptoid sequence into a highly ordered nanosheet. Pept Sci 96:586–595

    Article  Google Scholar 

  51. Robertson EJ, Olivier GK, Qian M, Proulx C, Zuckermann RN, Richmond GL (2014) Assembly and molecular order of two-dimensional peptoid nanosheets through the oil–water interface. Proc Natl Acad Sci 111:13284–13289

    Article  Google Scholar 

  52. Sanii B, Haxton TK, Olivier GK, Cho A, Barton B, Proulx C, Whitelam S, Zuckermann RN (2014) Structure-determining step in the hierarchical assembly of peptoid nanosheets. ACS Nano 8:11674–11684

    Article  Google Scholar 

  53. Battigelli A, Kim JH, Dehigaspitiya DC, Proulx C, Robertson EJ, Murray DJ, Rad B, Kirshenbaum K, Zuckermann RN (2018) Glycosylated peptoid nanosheets as a multivalent scaffold for protein recognition. ACS Nano 12(3):2455–2465

    Article  Google Scholar 

  54. Jun JMV, Altoe M, V P, Aloni S, Zuckermann RN (2015) Peptoid nanosheets as soluble, two-dimensional templates for calcium carbonate mineralization. Chem Commun 51:10218–10221

    Article  Google Scholar 

  55. Olivier GK, Cho A, Sanii B, Connolly MD, Tran H, Zuckermann RN (2013) Antibody-mimetic peptoid nanosheets for molecular recognition. ACS Nano 7:9276–9286

    Article  Google Scholar 

Download references

Funding

P.Y. thanks the funding from the National Natural Science Foundation of China (Grant Nos. 51673112 and 21374057), the 111 Project (Grant No. B14041), and Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT_14R33) as well as Open Project of State Key Laboratory of Supramolecular Structure and Materials (Grant No. sklssm201727). W. Z. thanks the support of Natural Science Basic Research Plan in Shaanxi Province (No. 2016JM5024), China Postdoctoral Science Foundation (No. 2014M560747), and Scientific Research Project of Xianyang Normal University (No. 13XSYK017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Yang, P. 2D bio-nanostructures fabricated by supramolecular self-assembly of protein, peptide, or peptoid. Adv Compos Hybrid Mater 2, 201–213 (2019). https://doi.org/10.1007/s42114-018-0066-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-018-0066-x

Keywords

Navigation