Skip to main content
Log in

Enhanced magnetocaloric properties with a tunable Curie temperature in (1 − x)La0.55 0.1Ca0.35MnO3/xLa0.7Ca0.2Sr0.1MnO3 system (0 ≤ x ≤ 1)

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Improvement of magnetocaloric properties with tunable Curie temperature near room temperature is revealed to be possible by the mixture of both individual phases La0.55 0.1Ca0.35MnO3 (phase 1) and La0.7Ca0.2Sr0.1MnO3 (phase 2). This work demonstrates the outstanding agreement between the experimental results and the continuous curves predicted by numerical calculations in a two phases composite system (1 − x)La0.55 0.1Ca0.35MnO3/xLa0.7Ca0.2Sr0.1MnO3 (0 ≤ x ≤ 1). Our samples were synthesized using the sol–gel process and the solid-state reaction for phase 1 and phase 2, respectively. For both samples, a clear ferromagnetic (FM)-paramagnetic (PM) transition at the Curie temperature (TC) is observed. Such a TC is found to be 274.7 and 308 K for La0.55 0.1Ca0.35MnO3 and La0.7Ca0.2Sr0.1MnO3, respectively. Besides, the magnetic entropy change and the Relative Cooling Power (RCP) values were estimated for the biphasic system (1 − x)La0.55 0.1Ca0.35MnO3/xLa0.7Ca0.2Sr0.1MnO3 with 0 ≤ x ≤ 1. We revealed that the optimum magnetocaloric effect at µ0H = 2 T has been found for the composition with x = 0.65, which displays a table-like ΔS curve with a peak value slightly lowered and strongly expanded around room temperature when compared with those of the parent compounds. Therefore, the obtained results will draw considerable attention in the field of research regarding the development of magnetic refrigeration devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Ezaami, I. Sfifir, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, Critical properties in La0.7Ca0.2Sr0.1MnO3 manganite: a comparison between sol–gel and solid-state process. J. Alloys Compd. 693, 658 (2017)

    Article  Google Scholar 

  2. A. Ezaami, E. Sellami-Jmal, I. Chaaba, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, E.K. Hlil, Effect of elaborating method on magnetocaloric properties of La0.7Ca0.2Ba0.1MnO3 manganite. J. Alloys Compd. 685, 710 (2016)

    Article  Google Scholar 

  3. K.A. Gschneidner Jr., V.K. Pecharsky, O.A. Tsokol, Recent developments in magnetocaloric materials. Rep. Prog. Phys. 68, 1479 (2005)

    Article  Google Scholar 

  4. A. Ezaami, E. Sellami-Jmal, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, E.K. Hlil, Correlation between critical properties and magnetocaloric effect using phenomenological model in La0.7Ca0.2Ba0.1MnO3 compound. J. Phys. Chem. Solids 109, 109 (2017)

    Article  Google Scholar 

  5. O. Tegus, E. Bruck, K.H.J. Buschow, F.R. de Boer, Transition-metal-based magnetic refrigerants for room-temperature applications. Nature 415, 150 (2002)

    Article  Google Scholar 

  6. A. Ezaami, E. Sellami-Jmal, W. Cheikhrouhou-Koubaa, E-K. Hlil, A. Cheikhrouhou, Investigation of the critical properties near room temperature in La0.7Ca0.2Ba0.1MnO3 manganite. J. Mater. Sci. (2017). doi:10.1007/s10854-017-6382-z

    Google Scholar 

  7. Z.B. Guo, Y.W. Du, J.S. Zhu, H. Huang, W.P. Ding, D. Feng, Large magnetic entropy change in perovskite-type manganese oxides. Phys. Rev. Lett. 78, 1142 (1997)

    Article  Google Scholar 

  8. A. Ezaami, N. Ouled Nasser, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, Phenomenological model of the magnetocaloric effect and its correlation with critical behavior near room temperature in La0.7Ca0.2S0.1MnO3 manganite. J. Mater. Sci. (2017). doi:10.1007/s10854-017-6765-1

    Google Scholar 

  9. F. Ayadi, Y. Regaieg, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, H. Lecoq, S. Nowak, S. Ammara, L. Sicard, Preparation of nanostructured La0.7Ca0.3−xBaxMnO3 ceramics by a combined sol–gel and spark plasma sintering route and resulting magnetocaloric properties. J. Magn. Magn. Mater. 381, 215 (2015)

    Article  Google Scholar 

  10. R. M’nassri, W. Cheikhrouhou-Koubaa, M. Koubaa, N. Boudjada, A. Cheikhrouhou, Magnetic and magnetocaloric properties of Pr0.6–xEuxSr0.4MnO3 manganese oxides. Solid State Commun. 151, 1579 (2011)

    Article  Google Scholar 

  11. R. M’nassri, W. Cheikhrouhou-Koubaa, N. Chniba Boudjada, A. Cheikhrouhou, Effect of barium-deficiency on the structural, magnetic, and magnetocaloric properties of La0.6Sr0.2 Ba0.2–x◻xMnO3 (0 ≤ x ≤ 0.15). J. Appl. Phys. 113, 073905 (2013)

    Article  Google Scholar 

  12. E. Sellami-Jmal, A. Ezaami, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, Prediction of magnetocaloric effect in lanthanum deficiency with phenomenological model. J. Supercond. Nov. Magn. (2017). doi:10.1007/s10948-016-3794-6

    Google Scholar 

  13. A. Ezaami, E. Sellami-Jmal, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, Phenomenological model of magnetocaloric effect in La0.7Ca0.2Ba0.1MnO3 manganite around room temperature. J. Supercond. Nov. Magn. (2017). doi:10.1007/s10948-016-3887-2

    Google Scholar 

  14. E. Sellami-Jmal, A. Marzouki, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, N. Njah, Deficiency effect on magnetic and magnetocaloric properties of La0.65–x xCa0.35MnO3 manganites synthesized using sol–gel technique. J. Supercond. Nov. Magn. 28, 831 (2015)

    Article  Google Scholar 

  15. A. Marzouki-Ajmi, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, Structural, magnetic and magnetocaloric study of polycrystalline (1 − x) La0.65Ca0.35MnO3/xCr2O3 composites. J Supercond. Nov. Magn. 28, 1065 (2015)

    Article  Google Scholar 

  16. E. Zghal, M. Koubaa, P. Berthet, L. Sicard, W. Cheikhrouhou-Koubaa, C. Decorse-Pascanut, A. Cheikhrouhou, S. Ammar-Merah, Magneto-transport properties of La0.75Ca0.15Sr0.1MnO3 with YBa2Cu3O7–δ addition. J. Magn. Magn. Mater. 414, 97 (2016)

    Article  Google Scholar 

  17. E. Sellami-Jmal, A. Marzouki-Ajmi, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, S. Nowak, L. Sicard, S. Ammar-Merah, N. Njah, Effect of calcium deficiency on the structural, magnetic and magnetocaloric properties in La0.65Ca0.35MnO3 manganites oxides. J. Supercond. Nov. Magn. 28, 2409 (2015)

    Article  Google Scholar 

  18. A. Ezaami, N. Ouled Nasser, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, E.K. Hlil, Physical properties of La0.7Ca0.2Sr0.1MnO3 manganite: a comparison between sol–gel and solid state process. J. Mater. Sci. (2017). doi:10.1007/s10854-016-5969-0

    Google Scholar 

  19. R.A. Young, Oxford University Press, New York (1993)

  20. R. Caballero-Flores, V. Franco, A. Conde, K.E. Knipling, M.A. Willard, Optimization of the refrigerant capacity in multiphase magnetocaloric materials. Appl. Phys. Lett. 98, 102505 (2011)

    Article  Google Scholar 

  21. S.C. Paticopoulos, R. Caballero-Flores, V. Franco, J.S. Bla´zquez, A. Conde, K.E. Knipling, M.A. Willard, Enhancement of the magnetocaloric effect in composites: experimental validation. Solid State Commun. 152, 1590 (2012)

    Article  Google Scholar 

  22. G.F. Wang, Z.R. Zhao, H.L. Li, X.F. Zhang, Enhancement of refrigeration capacity and table-like magnetocaloric effect in La0.8Ca0.2MnO3/La0.8K0.2MnO3 nanocrystalline composite. Ceram. Int. 41, 9035 (2015)

    Article  Google Scholar 

  23. S.K. Banerjee, On a generalised approach to first and second order magnetic transitions. Phys. Lett. 12, 16 (1964)

    Article  Google Scholar 

  24. C. Romero Muniz, V. Franco, A. Conde, Influence of magnetic interactions between phases on the magnetocaloric effect of composites. Appl. Phys. Lett. 102, 082402 (2013)

    Article  Google Scholar 

  25. H. Mbarek, R. M’nasri, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, Magnetocaloric effect near room temperature in (1−y)La0.8Ca0.05K0.15MnO3/yLa0.8K0.2MnO3 composites. Phys. Status Solidi A 211, 975 (2014)

    Article  Google Scholar 

  26. M.A. Hamad, Magnetocaloric effect in La0.7Sr0.3MnO3/Ta2O5 composites. J. Adv. Ceram. 2, 213 (2013)

    Article  Google Scholar 

  27. R. M’nassri, N. Chniba Boudjada, A. Cheikhrouhou, Nearly constant magnetic entropy change involving the enhancement of refrigerant capacity in (La0.6Ba0.2Sr0.2MnO3)1–x/(Co2O3) x composite. Ceram. Int. 41, 7447 (2016)

    Article  Google Scholar 

  28. R. M’nassri, A. Cheikhrouhou, Magnetocaloric effect in different impurity doped La0.67Ca0.33MnO3 composite. J. Supercond. Nov. Magn. 27, 421 (2014)

    Article  Google Scholar 

  29. M.S. Anwar, F. Ahmed, R. Danish, B.H. Koo, Impact of Co3O4 phase on the magnetocaloric effect and magnetoresistance in La0.7Sr0.3MnO3/Co3O4 and La0.7Ca0.3MnO3/Co3O4 ceramic composites. Ceram. Int. 41, 631 (2015)

    Article  Google Scholar 

  30. A.M. Aliev, A.G. Gamzatov, K.I. Kamilov, A.R. Kaul, N.A. Babushkina, Magnetocaloric properties of La0.7Ca0.3Mn16O3 and La0.7Ca0.3Mn18O3 manganites and their “sandwich”. Appl. Phys. Lett. 101, 172401 (2012)

    Article  Google Scholar 

  31. P. Alvarez, J.L. Sanchez, L. Lamazares, P. Gorria, J.A. Blanco, Enhanced refrigerant capacity and magnetic entropy flattening using a two-amorphous FeZrB (Cu) composite. Appl. Phys. Lett. 99, 232501 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Tunisian Ministry of Higher Education, Scientific Research and Information and Communication Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ezaami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezaami, A., Sellami-Jmal, E., Cheikhrouhou-Koubaa, W. et al. Enhanced magnetocaloric properties with a tunable Curie temperature in (1 − x)La0.55 0.1Ca0.35MnO3/xLa0.7Ca0.2Sr0.1MnO3 system (0 ≤ x ≤ 1). J Mater Sci: Mater Electron 28, 16741–16746 (2017). https://doi.org/10.1007/s10854-017-7588-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7588-9

Navigation