Skip to main content
Log in

Influence of dopant on structural, optical and dielectric properties of Sn1−XCoxO2 nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, the optical and dielectric properties of Co doped SnO2 nanoparticles were studied using a.c. impedance spectroscopy. X-ray diffraction (XRD) confirmed that the Co doped SnO2 powder samples have the same tetragonal structure as pure SnO2 nanoparticles. The structural, surface morphological studies, compositional analyses and optical energy band gap were investigated by XRD, Scanning electron microscopy (SEM), Energy Dispersive X-ray Analysis (EDAX), and UV–Vis Spectroscopy. It is evident from the XRD result that annealed SnO2 samples exhibits tetragonal crystal structure with crystallite size ranging from 8 to 12 nm. The optical band gaps value of doped SnO2 nanoparticles were calculated to be in the range 5.33–5.8 eV. Impedance spectroscopy was carried out at room temperature in the frequency range of 100 kHz–14 MHz to explore the electrical properties of Sn1−xCoxO2 nanoparticles. For all the Co doped SnO2 samples prepared with Co content x ≤ 0.04, the SnO2 lattice contracts with the increasing dopant concentration. The dielectric constant, dielectric loss and a.c. electrical conductivity decrease with the increase in Co doping concentration. The decrease of dielectric constant and dielectric loss of the nanomaterial with respect to increasing frequency suggests that this nanomaterial can be employed in the fabrication of devices used at high-frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J.T. Hu, M. Ouyang, P.D. Yang, C.M. Lieber, Nature 48, 399 (1999)

    Google Scholar 

  2. B. Sathyaseelan, K. Senthilnathan, T. Alagesan, R. Jayavel, K. Sivakumar, Mater. Chem. Phys. 124, 1046 (2010)

    Article  Google Scholar 

  3. J. Kappler, A. Tomescu, N. Barsan, V. Weimar, Thin Solid Films 391, 186 (2001)

    Article  Google Scholar 

  4. R.K. Mishra, P.P. Sahay, Ceram. Int. 38, 2295 (2012)

    Article  Google Scholar 

  5. G. Zhang, M. Liu, Sens. Actuators B 69, 144 (2000)

    Article  Google Scholar 

  6. M. Batzill, U. Diebold, Prog. Surf. Sci. 79, 47 (2005)

    Article  Google Scholar 

  7. H.C. Chiu, C.S. Yeh, J. Phys. Chem. C 11, 7256 (2007)

    Article  Google Scholar 

  8. T.P. Hülser, H. Wiggers, F.E. Kruis, A. Lorke, Sens. Actuators B 109, 13 (2005)

    Article  Google Scholar 

  9. A. Azam, A.S. Ahmed, M.S. Ansari, M. Shafeeq, A.H. Naqvi, J. Alloys Compd. 506, 237 (2010)

    Article  Google Scholar 

  10. V. Golovanov, A.M. Matti, Sens. Actuators B Chem. ​106, 563 (2005)

  11. H. Kimura, T. Fukumura, M. Kawasaki, K. Inaba, T. Hasegawa, H. Koinuma, Appl. Phys. Lett. 80, 94 (2002)

    Article  Google Scholar 

  12. R Maity, S Kundoo, K.K. Chattopadhyay, Mater. Manuf. Process. 21, 644 (2006)

    Article  Google Scholar 

  13. R Rai, T.D. Senguttuvan, S.T. Lakshmikumar, Comput. Mat. Sci. 37, 15 (2006)

    Article  Google Scholar 

  14. A.E. Owen, in Progress in Ceramic Science. 3, ed. by J. E. Burke, (Macmillan, New York, 1963), p. 77

    Google Scholar 

  15. B. Stjerna, E. Olssonand, C.G. Granqvist, J. Appl. Phys. 76, 3797 (1994)

    Article  Google Scholar 

  16. E. Shanthi, V. Dutta, A. Banerjeeand, K.L. Chopra, J. Appl. Phys. 51, 6243 (1980)

    Article  Google Scholar 

  17. E. Shanthi, A. Banerjee, V. Duttaand, K.L. Chopra, J. Appl. Phys. 53, 1615 (1982)

    Article  Google Scholar 

  18. J. H. Kang, Y. Kim, D. Young, Electrochem. Soc. 152(3), 33 (2005)

    Article  Google Scholar 

  19. N.F. Habubi, G.H. Mohamed, S.F. Oboudi, S.S. Chiad, PCAIJ 9(5), 169 (2014)

    Google Scholar 

  20. V. Golovanov, A.M. Matti, Sens. Actuators. B 106, 563 (2005)

    Article  Google Scholar 

  21. Newtons 4th Ltd., Frequency response analyzer, guide to PSM1735—IAI compensation, guide to IAI calibration (2008)

  22. L.B. Kong, Z.W. Li, G.Q. Lin, Y.B. Gan, Acta Mater. 55, 6561 (2007)

    Article  Google Scholar 

  23. T. Prodromakis, C. Papavassiliou, Appl. Surf. Sci. 255, 6989 (2009)

    Article  Google Scholar 

  24. H. Young, Y. Lin, H. Wang, F. Luo, Mater. Manuf. Process. 23, 489 (2008)

    Article  Google Scholar 

  25. R.V. Mangalaraja, P. Manohar, F.D. Gnanam, J. Mater. Sci. 39, 2037 (2004)

    Article  Google Scholar 

  26. R. Khan, Zulfiqar, S. Fashu, M.U. Rahman, J. Mater. Sci. 27, 7725 (2016)

    Google Scholar 

  27. A. Tataroglu, S. Altındal, M.M. Bulbul, Microelectron. Eng. 81, 140 (2005)

    Article  Google Scholar 

  28. H. MahmoudiChenari, M.M. Golzan, H. Sedghi, A. Hassanzadeh, M. Talebian, Curr. Appl. Phys. 11, 1071 (2011)

    Article  Google Scholar 

  29. V.V. Daniel, Dielectric Relaxation, (Academic Press, London, 1967)

    Google Scholar 

  30. K.G. Dhinakar, T. Selvalakshmi, S.M. Sundar, A.C. Bose, J. Mater. Sci. 27, 5818 (2016)

    Google Scholar 

  31. A. Azam, A.S. Ahmed, M. Chaman, A.H. Naqvi, J. Appl. Phys. 108, 094329 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge their sincere thanks to Dr. R. Somashekhar, Department of Physics, Manasagangotri, University of Mysore for providing XRD facility and Department of Material Engineering, Indian Institute of Science, Bangalore for the EDAX and SEM facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Jayanna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajeeva, M.P., Naveen, C.S., Lamani, A.R. et al. Influence of dopant on structural, optical and dielectric properties of Sn1−XCoxO2 nanoparticles. J Mater Sci: Mater Electron 28, 16348–16357 (2017). https://doi.org/10.1007/s10854-017-7542-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7542-x

Navigation