Skip to main content
Log in

A correlative study on strain and variation of coercive field in lead-free (Na0.5Bi0.5)TiO3–Bi(Mg0.5Zr0.5)O3–Bi(Mg0.5Ti0.5)O3 ternary system

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sodium bismuth titanate–bismuth magnesium zirconate–bismuth magnesium titanate (NBT–BMZ–BMT) lead-free ternary ceramics are prepared by solid-state reaction method. Consequence on structural, dielectric, ferroelectric properties and piezoelectric coefficient is investigated. Single phase rhombohedral R3c phase is retained in all poled samples. Coercive field decreases due to minimum homogeneous strain (δ) which facilitates domain reorientation and domain switching. Reduced homogeneous strain is the key factor which lowers the coercive field and enhances the dielectric constant. NBT–BMZ–BMT ternary ceramics reduces the coercive field and possesses high remnant polarization, dielectric constant and piezoelectric coefficient—the important requirement in functional devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84–87 (2004)

    Article  Google Scholar 

  2. J. Rodel, W. Jo, K.T.P. Seifert, E. Anon, T. Granzow, J. Am. Ceram. Soc. 92(6), 1153–1177 (2009)

    Article  Google Scholar 

  3. G.H. Haertling, J. Am. Ceram. Soc. 82, 797–818 (1999)

    Article  Google Scholar 

  4. P.K. Panda, J. Mater. Sci. 44, 5049–5062 (2009)

    Article  Google Scholar 

  5. M. Demartin Maeder, D. Damjanovic, N. Setter, J. Electroceram. 13, 385–392 (2004)

    Article  Google Scholar 

  6. S.O. Leontsev, R.E. Eitel, Sci. Technol. Adv. Mater. 11, 044302 (2010)

    Article  Google Scholar 

  7. E. Aksel, J.L. Jones, Sensors 10, 1935–1954 (2010)

    Article  Google Scholar 

  8. T.R. Shrout, S.J. Zhang, J. Electroceram. 17, 111–124 (2007)

    Google Scholar 

  9. C.A. Randall, R. Eitel, B. Jones, T.R. Shrout, D.I. Woodward, I.M. Reaney, J. Appl. Phys. 95, 3633 (2004)

    Article  Google Scholar 

  10. G. Shabbir, A.H. Qureshi, S. Kojima, D.A. Hall, Ferroelectrics 346, 72–76 (2007)

    Article  Google Scholar 

  11. M.R. Suchomel, K.P. Davies, J. Appl. Phys. 96, 4405 (2004)

    Article  Google Scholar 

  12. Q. Wang, J. Chen, L. Fan, L. Liu, L. Fang, X. Xing, J. Am. Ceram. Soc. 96, 1171 (2013)

    Article  Google Scholar 

  13. A. Ullah, M. Ishfaq, C.W. Ahn, A. Ullah, S.E. Awan, W. Kim, Ceram. Int. 41, 10557 (2015)

    Article  Google Scholar 

  14. D.E. Jain Ruth, M. Muneeswaran, N.V. Giridharan, B. Sundarakannan, J. Mater. Sci. 27, 7018–7023 (2016)

    Google Scholar 

  15. D.E. Jain Ruth, S.M. Abdul Kader, M. Muneeswaran, N.V. Giridharan, D. Pathinettam Padiyan, B. Sundarakannan, Ceram. Int. 42, 3330–3337 (2016)

    Article  Google Scholar 

  16. X.X. Wang, X.G. Tang, H.L.W. Chan, Appl. Phys. Lett. 85(1), 91 (2004)

    Article  Google Scholar 

  17. W. Chen, Y. Li, Q. Xu, J. Zhou, J. Electroceram. 15, 229–235 (2005)

    Article  Google Scholar 

  18. S.-T. Zhang, A.B. Kounga, E. Aulbach, T. Granzow, W. Jo, H.-J. Kleebe, J. Rödel, J. Appl. Phys. 103, 034107 (2008)

    Article  Google Scholar 

  19. E.-M. Anton, L.A. Schmitt, M. Hinterstein, J. Trodahl, B. Kowalski, W. Jo, H.-J. Kleebe, J. Rödel, J.L. Jones, J. Mater. Res. 27(19), 2466 (2012)

    Article  Google Scholar 

  20. Y.-M. Li, W. Chen, Q. Xu, J. Zhou, H.-J. Sun, M.-S. Liao, J. Electroceram. 14, 53–58 (2005)

    Article  Google Scholar 

  21. Y. Wu, H. Zhang, Y. Zhang, J. Ma, D. Xie, J. Mater. Sci. 38, 987–994 (2003)

    Article  Google Scholar 

  22. H. Yang, X. Shan, C. Zhou, Q. Zhou, W. Li, J. Cheng, Bull. Mater. Sci. 36(2), 265–270 (2013)

    Article  Google Scholar 

  23. B.N. Rao, R. Ranjan, Phys. Rev. B86, 134103 (2012)

    Article  Google Scholar 

  24. E. Aksel, J.S. Forrester, J.L. Jones, P.A. Thomas, K. Page, M.R. Suchomel, Appl. Phys. Lett. 98, 152901 (2011)

    Article  Google Scholar 

  25. G.O. Jones, P.A. Thomas, Acta Cryst. B58, 168–178 (2002)

    Article  Google Scholar 

  26. W. Heywang, K. Lubitz, W. Wersing, Piezoelectricity Evolution and Future of a Technology, Springer Series in Materials Science (Springer, New York, 2008)

    Google Scholar 

  27. J. Petzelt, S. Kamba, J. Fabry, D. Noujni, V. Porokhonskyy, A. Pashkin, I. Franke, K. Roleder, J. Suchanicz, R. Klein, G.E. Kugel, J. Phys. 16, 2719 (2004)

    Google Scholar 

  28. J. Kreisel, P. Bouvier, J. Raman Spectrosc. 34, 524 (2003)

    Article  Google Scholar 

  29. J. Suchanicz, I. Jankowska-Sumara, T.V. Kruzina, J. Electroceram. 27, 45 (2011)

    Article  Google Scholar 

  30. M.K. Niranjan, T. Karthik, S. Asthana, J. Pan, U.V. Waghmare, J. Appl. Phys. 113, 194106 (2013)

    Article  Google Scholar 

  31. D.J. Griffiths, Introduction to Electrodynamics, 3rd edn. (Prentice Hall, Englewood, 1998

    Google Scholar 

  32. A.K. Singh, T.C. Goel, R.G. Mendiratta, O.P. Thakur, C. Prakash, J. Appl. Phys. 91, 6626 (2002)

    Article  Google Scholar 

  33. S. Chopra, S. Sharma, T.C. Goel, R.G. Mendiratta, Appl. Surf. Sci. 230, 207 (2004)

    Article  Google Scholar 

  34. W. Jo, J.E. Daniels, J.L. Jones, X. Tan, P.A. Thomas, D. Damjanovic, J. Rödel, J. Appl. Phys. 109, 014110 (2011)

    Article  Google Scholar 

  35. R. Ranjan, A. Dviwedi, Solid State Commun. 135, 394–399 (2005)

    Article  Google Scholar 

  36. G. Fan, W. Lu, X. Wang, F. Liang, J. Phys. D 41, 035403 (2008)

    Article  Google Scholar 

  37. S. Zhao, L. Zhang, G. Li, B. Li, A. Ding, Integr. Ferroelectr. 78, 119–126 (2006)

    Article  Google Scholar 

  38. J. Suchanicz, M.G. Gavshin, A.Y. Kudzin, C.Z. Kus, J. Mater. Sci. 36, 1981–1985 (2001)

    Article  Google Scholar 

  39. S. Krohns, P. Lunkenheimer, S. Meissner, A. Reller, B. Gleich, A. Rathgeber, T. Gaugler, H.U. Buhl, D.C. Sinclair, A. Loidl, Nat. Mater. 10, 899–901 (2011)

    Article  Google Scholar 

  40. L.E. Cross, Ferroelectric Ceramics, Monte Verita (Birkhiiuser Verlag, Basel, 1993), pp. 1–84

    Book  Google Scholar 

  41. D.E. Jain Ruth, M. Veera Gajendra Babu, S.M. Abdul Kader, B. Bagyalakshmi, D. Pathinettam Padiyan, B. Sundarakannan, J. Mater. Sci. 26, 6757–6761 (2015)

    Google Scholar 

Download references

Acknowledgements

We thank the Council of Scientific and Industrial Research (CSIR), New Delhi, India, funding agency for the financial support under the Grant No. 03/(1238)/12/EMR-II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. E. Jain Ruth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain Ruth, D.E., Sundarakannan, B. A correlative study on strain and variation of coercive field in lead-free (Na0.5Bi0.5)TiO3–Bi(Mg0.5Zr0.5)O3–Bi(Mg0.5Ti0.5)O3 ternary system. J Mater Sci: Mater Electron 28, 15907–15914 (2017). https://doi.org/10.1007/s10854-017-7486-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7486-1

Navigation