Skip to main content
Log in

Role of strain and lattice distortion on ferroelectric and piezoelectric properties of bismuth magnesium zirconate substituted sodium bismuth titanate ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Effect of weak ferroelectric perovskite, bismuth magnesium zirconate [Bi(Mg0.5Zr0.5)O3] substitution in lead-free sodium bismuth titanate [(Na0.5Bi0.5)TiO3] ceramics is studied. Influence of substitution on intrinsic and extrinsic contribution and impact on ferroelectric and piezoelectric properties are investigated. Improved spontaneous polarization (Ps), increased remnant polarization (Pr), decreased coercive field (Ec) and high piezoelectric coefficient (d33) are obtained for x = 0.01 mole fraction of Bi(Mg0.5Zr0.5)O3 substitution due to decrease in rhombohedral lattice distortion and homogeneous strain. Small rhombohedral lattice distortion (δr) and minimum homogeneous strain (δ) are the primary intrinsic parameters which favours the extrinsic parameters such as mobility of non-180° domain reorientation, domain switching and domain wall motion. Enhanced mobility softens the coercive field and increases remnant polarization to maximum. Reduced rhombohedral lattice distortion, low strain and enhanced mobility are the key factors for enhanced piezoelectric constant, highest remnant polarization and decreased coercive field in non-MPB (1 − x)(Na0.5Bi0.5)TiO3xBi(Mg0.5Zr0.5)O3 solid solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Rodel, W. Jo, K.T.P. Seifert, E. Anon, T. Granzow, J. Am. Ceram. Soc. 92, 1153 (2009)

    Article  Google Scholar 

  2. G.H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999)

    Article  Google Scholar 

  3. P.K. Panda, J. Mater. Sci. 44, 5049 (2009)

    Article  Google Scholar 

  4. M. Demartin Maeder, D. Damjanovic, N. Setter, J. Electroceram. 13, 385 (2004)

    Article  Google Scholar 

  5. S.O. Leontsev, R.E. Eitel, Sci. Technol. Adv. Mater. 11, 044302 (2010)

    Article  Google Scholar 

  6. E. Aksel, J.L. Jones, Sensors 10, 1935 (2010)

    Article  Google Scholar 

  7. T.R. Shrout, S.J. Zhang, J. Electroceram. 19, 111 (2007)

    Article  Google Scholar 

  8. W. Jo, J.E. Daniels, J.L. Jones, X. Tan, P.A. Thomas, D. Damjanovic, J. Rödel, J. Appl. Phys. 109, 014110 (2011)

    Article  Google Scholar 

  9. M. Chen, Q. Xu, B.H. Kim, B.K. Ahn, J.H. Ko, W.J. Kang, O.J. Nam, J. Eur. Ceram. Soc. 28, 843 (2008)

    Article  Google Scholar 

  10. F. Cordero, F. Craciun, F. Trequattrini, E. Mercadelli, C. Galassi, Phys. Rev. B 81, 144124 (2010)

    Article  Google Scholar 

  11. I. Levin, I.M. Reaney, E.M. Anton, W. Jo, J. Rodel, J. Pokorny, L.A. Schmitt, H.J. Kleebe, M. Hinterstein, J.L. Jones, Phys. Rev. B 87, 024113 (2013)

    Article  Google Scholar 

  12. A. Moosavi, M.A. Bahrevar, A.R. Aghaei, P. Ramos, M. Alguero, H. Amorın, J. Phys. D Appl. Phys. 47, 055304 (2014)

    Article  Google Scholar 

  13. D. Rout, K.-S. Moon, S.-J.L. Kang, I.W. Kim, J. Appl. Phys. 108, 084102 (2010)

    Article  Google Scholar 

  14. Y. Hiruma, Y. Imai, Y. Watanabe, H. Nagata, T. Takenaka, Appl. Phys. Lett. 92, 262904 (2008)

    Article  Google Scholar 

  15. S. Kuharungrong, W. Schulze, J. Am. Ceram. Soc. 79(5), 1273–1280 (1996)

    Article  Google Scholar 

  16. J.-K. Lee, K.S. Hong, C.K. Kim, S.-E. Park, J. Appl. Phys. 91, 4538 (2002)

    Article  Google Scholar 

  17. G. Fan, W. Lu, X. Wang, F. Liang, J. Xiao, J. Phys. D Appl. Phys. 41, 035403 (2008)

    Article  Google Scholar 

  18. Yu. Huichun, Z.-G. Ye, Appl. Phys. Lett. 93, 112902 (2008)

    Article  Google Scholar 

  19. L. Eric Cross, Ferroelectric Ceramics, Monte Verita (Birkhiiuser Verlag, Basel, 1993), pp. 1–84

  20. W. Heywang, K. Lubitz, W. Wersing, Piezoelectricity Evolution and Future of a Technology, Springer Series in Materials Science (Springer, Berlin, 2008), p. 96

    Google Scholar 

  21. B.J. Chu, D.R. Chen, G.R. Li, Q.R. Yin, J. Eur. Ceram. Soc. 22, 2115 (2002)

    Article  Google Scholar 

  22. Y. Watanabe, Y. Hiruma, H. Nagata, T. Takenaka, Ceram. Int. 34, 761764 (2008)

    Article  Google Scholar 

  23. A. Herabut, A. Safari, J. Am. Ceram. Soc. 80(11), 29542958 (1997)

    Article  Google Scholar 

  24. T. Takenaka, H. Nagata, Jpn. J. Appl. Phys. 36(9B), 60556057 (1997)

    Google Scholar 

  25. X. Wang, H. Chan, C.L. Choy, J. Am. Ceram. Soc. 86(10), 18091811 (2003)

    Article  Google Scholar 

  26. Y. Li, W. Chen, J. Zhou, Q. Xu, H. Sun, R. Xu, Mater. Sci. Eng., B 112, 59 (2004)

    Article  Google Scholar 

  27. C. Zhou, X. Liu, J. Mater. Sci. 43, 10161019 (2008)

    Google Scholar 

  28. C. Zhou, X. Liu, J. Mater. Sci.: Mater. Electron. 19, 29–32 (2008)

    Google Scholar 

  29. Q. Wang, J. Chen, L. Fan, L. Liu, L. Fang, X. Xing, J. Am. Ceram. Soc. 96, 1171 (2013)

    Article  Google Scholar 

  30. A. Ullah, M. Ishfaq, C.W. Ahn, A. Ullah, S.E. Awan, I.W. Kim, Ceram. Int. 41, 10557 (2015)

    Article  Google Scholar 

  31. Y. Hiruma, K. Yoshii, H. Nagata, T. Takenaka, J. Appl. Phys. 103, 084121 (2008)

    Article  Google Scholar 

  32. A. Maqbool, J. Rahman, A. Hussain, J.K. Park, T.G. Park, J.S. Song, M.H. Kim, IOP Conf. Ser. Mater. Sci. Eng. B 60, 012047 (2014)

    Google Scholar 

  33. D.E. Jain Ruth, M. Veera Gajendra Babu, S.M. Abdul Kader, B. Bagyalakshmi, D. Pathinettam Pandiyan, B. Sundarakannan, J. Mater. Sci.: Mater. Electron. 26, 6757–6761 (2015)

    Google Scholar 

  34. D.E. Jain Ruth, S.M. Abdul Kader, M. Muneeswaran, N.V. Giridharan, D. Pathinettam Pandiyan, B. Sundarakannan, J. Mater. Sci.: Mater. Electron. (2015). doi:10.1007/s10854-015-3768-7

    Google Scholar 

  35. J. Chen, J. Li, L. Fan, N. Zou, P. Gi et al., J. Appl. Phys. 112, 074101 (2012)

    Article  Google Scholar 

  36. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A32, 751 (1976)

    Article  Google Scholar 

  37. I. Grinberg, M.R. Suchomel, P.K. Davies, A.M. Rappe, J. Appl. Phys. 98, 094111 (2005)

    Article  Google Scholar 

  38. G.O. Jones, P.A. Thomas, Acta Cryst. B58, 168–178 (2002)

    Article  Google Scholar 

  39. T. Hahn, International Tables for Crystallography Volume A: Space-Group Symmetry, 5th edn. (Springer, Berlin, 2005), p. 16

    Google Scholar 

  40. B.N. Rao, R. Ranjan, Phys. Rev. B 86, 134103 (2012)

    Article  Google Scholar 

  41. Y.S. Sung, J.M. Kim, J.H. Cho, T.K. Song, M.H. Kim, H.H. Chong, T.G. Park, D. Do, S.S. Kim, Appl. Phys. Lett. 96, 022901 (2010)

    Article  Google Scholar 

  42. Y.S. Sung, J.M. Kim, J.H. Cho, T.K. Song, M.H. Kim, H.H. Chong, T.G. Park, Appl. Phys. Lett. 96, 202901 (2010)

    Article  Google Scholar 

  43. A.G. Khatchaturyan, Philos. Mag. 90, 37–60 (2010)

    Article  Google Scholar 

  44. J.L. Jones, M. Hoffman, J.E. Daniels, A.J. Studer, Appl. Phys. Lett. 89, 092901 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Council of Scientific and Industrial Research, New Delhi, India funding agency for the financial support under the Grant No. 03/(1238)/12/EMR-II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. E. Jain Ruth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain Ruth, D.E., Sundarakannan, B. Role of strain and lattice distortion on ferroelectric and piezoelectric properties of bismuth magnesium zirconate substituted sodium bismuth titanate ceramics. J Mater Sci: Mater Electron 27, 3250–3257 (2016). https://doi.org/10.1007/s10854-015-4152-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4152-3

Keywords

Navigation