Skip to main content
Log in

Photocatalytic activity of different organic dyes by using pure and Fe doped SnO2 nanopowders catalyst under UV light irradiation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A facile, chemical precipitation method has afforded highly crystalline iron (Fe) doped SnO2 nanoparticles with efficient photocatalytic degradation of phenol and benzoic acid under ultraviolet light irradiation. Powder X-ray diffraction results show that the both pure and Fe doped SnO2 samples are in tetragonal rutile type SnO2 phase and the results are well matched with the standard data (card no. 41-1445). Transmission electron microscope reveals that the morphology of the samples was spherical in shape and the average particle sizes were around 24–42 nm, which is in good agreement with the XRD results. UV–VIS transmission spectroscopy studies show that the band gap energy of pure SnO2 is 3.63, and 3.53, 3.34 eV for Fe-doped (3 & 5 wt%) SnO2 nanoparticles respectively. Energy dispersive spectra (EDS) spectra confirm the presence of Fe in the most active Fe-modified SnO2 sample. Fe-doped SnO2 sample exhibited enhanced activity for both phenol and benzoic acid under ultraviolet irradiation, which could be due to the Eg decreased by Fe-doping, high specific surface area and porous structure. The samples were further characterized by Fourier transform infrared (FTIR) and photoluminescence spectra analysis. The photocatalytic mechanism of Fe doped SnO2 also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. An, X. Ming, J. Wang, S. Wang. J. Mater. Chem. 22, 5171 (2012)

    Article  Google Scholar 

  2. M. Davis, W.M. Hikal, C. Gu¨meci, L.J. Hope-Weeks, Catal. Sci. Technol. 2, 922 (2012)

    Article  Google Scholar 

  3. M. Parthibavarman, V. Hariharan, C. Sekar, V.N. Singh, J. Optoelec. Adv. Mater. 12, 1894–1898 (2010)

    Google Scholar 

  4. M. Parthibavarman, B. Renganathan, D. Sastikumar, Curr. Appl. Phys. 13, 1537–1544 (2013)

    Article  Google Scholar 

  5. A.L. Linsebigler, G. Lu, J.T. Yates, Chem. Rev. 95, 735 (2002)

    Article  Google Scholar 

  6. M. Bowker, D. James, P. Stone, R. Bennett, N. Perskins, L. Millar, J. Greaves, A. Dickinson, J. Catal. 217, 427 (2003)

    Article  Google Scholar 

  7. F. Mueller, D. Bresser, V.S.K. Chakravadhanula. J. Power Sources 299, 398–402 (2015)

    Article  Google Scholar 

  8. X.M. Ye, W.J. Zhang, Q.J. Liu, S.P. Wang, Y.Z. Yang, H.Y. Wei, New J. Chem. 39, 130–135 (2015)

    Article  Google Scholar 

  9. L.J. Li, K. Yu, H.B. Mao, Z.Q. Zhu, Appl. Phys. A 99, 865–869 (2010)

    Article  Google Scholar 

  10. T. Guven, S. Erdal, Superlattice Microstruct. 69 175–186 (2014)

    Article  Google Scholar 

  11. T. Indira Gandhi, R. Ramesh Babu, K. Ramamurthi, M. Arivanandhan, Thin Solid Films 598, 195–203 (2016)

    Article  Google Scholar 

  12. V. Agrahari, A.K. Tripathi, M.C. Mathpal, A.C. Pandey, S.K. Mishra, R.K. Shukla, A. Agarwal, J. Mater. Sci. 26, 9571–9582 (2015)

    Google Scholar 

  13. T. Indira Gandhi, R. Ramesh Babu, K. Ramamurthi, Mater. Sci. Semicond. Process. 16 472–479 (2013)

    Article  Google Scholar 

  14. J. Mazloom, F.E. Ghodsi, H. Golmojde, J. Alloy Compd. 639, 393–399 (2015)

    Article  Google Scholar 

  15. J.Z. Ma, H. He, F.D. Liu, Appl. Catal. B 179, 21–28 (2015)

    Article  Google Scholar 

  16. Y. Yan, F.H. Du, X.P. Shen, G.X. Zhu, J. Mater. Chem. A 2, 15875–15882 (2014)

    Article  Google Scholar 

  17. M. Parthibavarman, K. Vallalperuman, S. Sathishkumar, M. Durairaj, K. Thavamani, J. Mater. Sci. 25, 730–735 (2014)

    Google Scholar 

  18. M. Parthibavarman, D. Madhan, P. Rajkumar, M. Sangeetha, J. Mater. Sci. 26, 6823–6830 (2015)

    Google Scholar 

  19. S. Vadivel, G. Rajarajan, J. Mater. Sci. 26, 5863–5870 (2015)

    Google Scholar 

  20. S. Vadivel, G. Rajarajan, J. Mater. Sci. 26, 3155–3162 (2015)

    Google Scholar 

  21. K. Anandan, V. Rajendran, J. Phys. Sci. 19, 129–141 (2014)

    Google Scholar 

  22. T. Krishnakumar, R. Jayaprakash, M. Parthibavarman, A.R. Phani, V.N. Singh, B.R. Mehta, Mater. Lett. 63, 896–898 (2009)

    Article  Google Scholar 

  23. Y.-J. Lin, C.-J. Wu. Surf. Coat. Technol. 88, 239–2347 (1996)

    Article  Google Scholar 

  24. T. Krishnakumar, Nicola Pinna, K. PrasannaKumari, K. Perumal, R. Jayaprakash, Mater. Lett. 62, 3437–3440 (2008)

    Article  Google Scholar 

  25. S. Vadivel, G. Rajarajan, J. Mater. Sci. 26, 7127–7133 (2015)

    Google Scholar 

  26. R. Mani, K. Vivekanandan, K. Vallalperuman, J. Mater. Sci. 28 (2017) 4396–4402

    Google Scholar 

  27. M.M. Khan, S.A. Ansari, M.O. Ansari, B.K. Min, J. Lee, M.H. Cho, J. Phys. Chem. C 118, 9477–9484 (2014)

    Article  Google Scholar 

  28. C.G. Silva, R. Juarez, T. Marino, R. Molinari, H. Garcia, J. Am. Chem. Soc. 133, 595–602 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mani, R., Vivekanandan, K. & Subiramaniyam, N.P. Photocatalytic activity of different organic dyes by using pure and Fe doped SnO2 nanopowders catalyst under UV light irradiation. J Mater Sci: Mater Electron 28, 13846–13852 (2017). https://doi.org/10.1007/s10854-017-7231-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7231-9

Navigation