Skip to main content
Log in

Effects of annealing atmosphere on microstructure, electrical properties and domain structure of BiFeO3 thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bismuth ferrite thin films were prepared by sol–gel method and spin-coating technique. The effects of annealing atmosphere (air and oxygen) on the microstructure, dielectric, ferroelectric properties and domain structure of bismuth ferrite thin films have been studied systematically. The XRD and AFM results indicate that the bismuth ferrite thin films annealed in air and oxygen atmosphere are rhombohedral perovskite structure and bismuth ferrite thin films annealed in oxygen atmosphere have higher purity, better thickness uniformity and smoothness, and slightly larger grain size than that of the sample annealed in air. Bismuth ferrite annealed in oxygen atmosphere have higher dielectric constant, lower dielectric loss and much higher remnant polarization than that of the thin films annealed in air. The PFM (Piezoelectric Force Microscopy) results indicate that there are coexistence of single domain and polydomain state grains in bismuth ferrite annealed in air and oxygen atmosphere, and the single domain critical size is 80–100 and 100–110 nm respectively. Moreover, there are non-neutral domain wall (negatively charged “tail to tail” and positively charged “head to head” domain wall) in bismuth ferrite thin films annealed in air and oxygen atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. X. Yang, Z. Zhou, T. Nan, Y. Gao, G.M. Yang, M. Liu, N.X. Sun, J. Mater. Chem. C 4, 234 (2016)

    Article  Google Scholar 

  2. S. Dong, J.M. Liu, S.W. Cheong, Z.F. Ren, Adv. Phys. 64, 519 (2015)

    Article  Google Scholar 

  3. J. Scott, NPG Asia Mater. 5, e72 (2013)

    Article  Google Scholar 

  4. D. Sando, Y.R. Yang, E. Bousquet, C. Carrétéro, V. Garcia, S. Fusil, D. Dolfi, A. Barthélémy, P. Ghosez, L. Bellaiche, M. Bibes, Nat. Commun. 7, 10718 (2016)

    Article  Google Scholar 

  5. A. Solmaz, M. Huijben, G. Koster, R. Egoavil, N. Gauquelin, G.V. Tendeloo, J. Verbeeck, B. Noheda, G. Rijnders, Adv. Funct. Mater. (2016). doi:10.1002/adfm.201505065

    Google Scholar 

  6. L.V. Costa, L.S. Rocha, J.A. Cortés, M.A. Ramirez, E. Longo, AZ. Simões, Ceram. Int. 41, 9265 (2015)

    Article  Google Scholar 

  7. M.S. Bernardo, T. Jardiel, M. Peiteado, A.C. Caballero, M. Villegas, J. Eur. Ceram. Soc. 31, 3047 (2011)

    Article  Google Scholar 

  8. T. Zheng, J.G. Wu, J. Mater. Chem. C 3, 11326 (2015)

    Article  Google Scholar 

  9. C.H. Yang, P.P. Lv, J.H. Song, J.F. Leng, X.S. Sun, J. Mater. Sci. 28, 3423 (2017)

    Google Scholar 

  10. G.H. Dong, G.Q. Tan, W.L. Liu, A. Xia, H.J. Ren, Ceram. Int. 40, 1919 (2014)

    Article  Google Scholar 

  11. S.S. Rajput, R. Katoch, K.K. Sahoo, G.N. Sharma, S.K. Singh, R. Gupta, A. Garg, J. Alloy Compd. 621, 339 (2015)

    Article  Google Scholar 

  12. H.Z. Chen, M.C. Kao, S.L. Young, J.D. Hwang, J.L. Chiang, P.Y. Chen, J. Magn. Magn. Mater. 381, 127 (2015)

    Article  Google Scholar 

  13. P.P. Lv, X.M. Jiang, J. Yan, G.D. Hu, J. Mater. Sci. 28, 2233 (2017)

    Google Scholar 

  14. W.L. Zhou, H.M. Deng, H.Y. Cao, J. He, J. Liu, P.X. Yang, J.H. Chu, Mater. Lett. 144, 93 (2015)

    Article  Google Scholar 

  15. C.C. Leu, T.J. Lin, S.Y. Chen, C.T. Hu, J. Am. Ceram. Soc. 98, 724 (2015)

    Article  Google Scholar 

  16. S. Hussain, S.K. Hasanain, G. Hassnain Jaffari, S. Shah Ismat, Curr. Appl. Phys. 15, 194 (2015)

    Article  Google Scholar 

  17. S.M. He, G.L. Liu, D.P. Zhu, S.S. Kang, Y.X. Chen, S.S. Yan, L.M. Mei, Chin. Phys. B 23, 036801 (2014)

    Article  Google Scholar 

  18. Y.H. Chu, T. Zhao, M.P. Cruz, Q. Zhan, P.L. Yang, L.W. Martin, M. Huijben, C.H. Yang, F. Zavaliche, H. Zheng, R. Ramesh, Appl. Phys. Lett. 90, 252906 (2007)

    Article  Google Scholar 

  19. C.J. Cheng, C.L. Lu, Z.H. Chen, L. You, J.L. Wang, T. Wu, Appl. Phys. Lett. 98, 242502 (2011)

    Article  Google Scholar 

  20. H.Y. Go, N. Wakiya, H. Funakubo, K. Satoh, M. Kondo, J.S. Cross, K. Maruyama, N. Mizutani, K. Shinozaki, Jpn. J. Appl. Phys. 46, 3491 (2007)

    Article  Google Scholar 

  21. K. Prashanthi, M. Gupta, Y.Y. Tsui, T. Thundat, Appl. Phys. A 110, 903 (2013)

    Article  Google Scholar 

  22. V.R. Singh, A. Dixit, A. Garg, D.C. Agrawal, Appl. Phys. A 90, 197 (2008)

    Article  Google Scholar 

  23. H.Y. Liu, Y.P. Pu, X. Shi, Q.B. Yuan, Ceram. Int. 39, S217 (2013)

    Article  Google Scholar 

  24. A.Z. Simões, C.S. Riccardi, M.L. Dos Santos, F. González Garcia, E. Longo, J.A. Varela, Mater. Res. Bull. 44, 1747 (2009)

    Article  Google Scholar 

  25. J.W. Kim, C.M. Raghavan, D. Do, T.K. Song, S.S. Kim, Integr. Ferroelectr. 132, 39 (2012)

    Article  Google Scholar 

  26. S.K. Singh, N. Menou, H. Funakubo, K. Maruyama, H. Ishiwara, Appl. Phys. Lett. 90, 242914 (2007)

    Article  Google Scholar 

  27. W. Cai, C.L. Fu, J.C. Gao, H.Q. Chen, J. Alloy Compd. 480, 870 (2009)

    Article  Google Scholar 

  28. J.W. Zhai, X. Yao, J. Shen, L.Y. Zhang, H. Chen, J. Phys. D Appl. Phys. 37, 748 (2004)

    Article  Google Scholar 

  29. Q.L. Zhao, P.P. Tan, G.P. He, J.J. Di, D.W. Wang, L.H. Qi, H.B. Jin, M.S. Cao, J. Sol-Gel Sci. Technol. 78, 258 (2016).

    Article  Google Scholar 

  30. D. Lee, B.C. Jeon, A. Yoon, Y.J. Shin, M.H. Lee, T.K. Song, S.D. Bu, M. Kim, J.S. Chung, J.G. Yoon, T.W. Noh, Adv. Mater. 26, 5005 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51102288, 51372283, 51402031, 61404018) and the Program for Innovation Teams in University of Chongqing, China (Grant No. CXTDX201601032).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Cai or Chunlin Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Cai, W., Gao, R. et al. Effects of annealing atmosphere on microstructure, electrical properties and domain structure of BiFeO3 thin films. J Mater Sci: Mater Electron 28, 12039–12047 (2017). https://doi.org/10.1007/s10854-017-7015-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7015-2

Keywords

Navigation