Skip to main content
Log in

The crossover of (Ba1−xCax)(Ti0.9Sn0.1)O3 piezoelectric ceramics from single-phase to composite with studying the structural and dielectric properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lead-free (Ba1−xCax)(Ti0.9Sn0.1)O3 perovskite ceramics (x = 0.02–0.5) (BCTS) were synthesized using the solid-state reaction technique. X-ray diffraction was used to identify the formed phases of the prepared compositions. The morphology of ceramics has been studied using a scanning electron microscope equipped with an energy dispersive spectrometer. Field emission scanning electron microscope was used to examine the morphology of sensing film calcined powder. The crossover from BCTS single-phase (x = 0.02) to BCTS composite(x = 0.5) was obtained via coexistence of both (x = 0.3) of Ca addition. The composite powder was sintered at higher temperature rather than the single-phase powder. The calcined powder sensing film was prepared by the screen-printing technique as humidity sensors. Thereafter, DC resistance measurements were performed in the presence of relative humidity RH at room temperature. All the compositions exhibited a poor sensitivity toward the humidity sensing in the range of 0–98% RH. The compositions 0.02 and 0.06 have shown orthorhombic–tetragonal phase transition (TO−T) below the room temperature, while the other compositions have shown a pure tetragonal phase. The highest value of permittivity at Curie temperature (ε = 29241 at 100 Hz) and piezoelectric coefficient (d33 = 495 pC/N) at room temperature were obtained at Ca = 0.06 due to present polymorphic phase transition. The effect of frequency on the dielectric constant and dielectric loss at room temperature were investigated. All the prepared compositions exhibited small values of dielectric loss from 50 Hz up to 100 KHz, which indicates a good reliability for electronic applications such as capacitors or memory devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. I. Fujii, S. Shimizu, K. Yamashita et al., Appl. Phys. Lett. 99, 202902 (2011)

    Article  Google Scholar 

  2. S. Halder, P. Gerber, T. Schneller, R. Waser, Appl. Phys. A 81, 11 (2005)

    Article  Google Scholar 

  3. L. Zhao, B.-P. Zhang, P.-F. Zhou, L.-F. Zhu, J.-F. Li, J. Eur. Ceram. Soc. 35, 533 (2015)

    Article  Google Scholar 

  4. X. N. Zhu, W. Zhang, X. M. Chen, Aip Adv. 3, 082125 (2013)

    Article  Google Scholar 

  5. W. Li, Z. Xu, R. Chu, P. Fu, G. Zang, J. Eur. Ceram. Soc. 32, 517 (2012)

    Article  Google Scholar 

  6. H. Bao, C. Zhou, D. Xue, J. Gao, X. Ren, J. Phys. D 43, 465401 (2010)

    Article  Google Scholar 

  7. W. Li, Z. Xu, R. Chu, P. Fu, G. Zang, Mater. Lett. 64, 2325 (2010)

    Article  Google Scholar 

  8. L.-F. Zhu, B.-P. Zhang, L. Zhao, J.-F. Li, J. Mater. Chem. C 2, 4764 (2014)

    Article  Google Scholar 

  9. Y. Yao, C. Zhou, D. Lv et al., EPL 98, 27008 (2012)

    Article  Google Scholar 

  10. S. Wada, M. Nitta, N. Kumada et al., Jpn. J. Appl. Phys. 47, 7678 (2008)

    Article  Google Scholar 

  11. W. Liu, X. Ren, Phys. Rev. Lett. 103, 257602 (2009)

    Article  Google Scholar 

  12. X. Wang, H. Yamada, C.-N. Xu, Appl. Phys. Lett. 86, 022905 (2005)

    Article  Google Scholar 

  13. Y. Zhang, J. Glaum, C. Groh et al., J. Am. Ceram. Soc. 97, 2885 (2014)

    Article  Google Scholar 

  14. J. Wang, B.K. Xu, S.P. Ruan, S.P. Wang, Mater. Chem. Phys. 78, 746 (2003)

    Article  Google Scholar 

  15. A.M. Babeer, M.A. El-Sadek, A.E.-r. Mahmoud, A.S. Afify, J. Tulliani, J. Mater. Sci. 27, 7622 (2016)

    Google Scholar 

  16. L. Jingbo, L. Wenchao, Z. Yanxi, W. Zhimin, Sens. Actuators B 75, 11 (2001)

    Article  Google Scholar 

  17. A.E.-r. Mahmoud, G. Viola, A.S. Afify, A.M. Babeer, M. Ferraris, J. Porous Mater. 1 (2016)

  18. J.-M. Tulliani, P. Bonville, Ceram. Int. 31, 507 (2005)

    Article  Google Scholar 

  19. U. Chaimongkon, A. Thongtha, T. Bongkarn, Curr. Appl. Phys. 11, S70 (2011)

    Article  Google Scholar 

  20. I. Levin, V. Krayzman, J.C. Woicik, Appl. Phys. Lett. 102, 162906 (2013)

    Article  Google Scholar 

  21. V. Krayzman, I. Levin, J. Woicik, F. Bridges, E. Nelson, D. Sinclair, J. Appl. Phys. 113, 044106 (2013)

    Article  Google Scholar 

  22. D. Fu, M. Itoh, S.-Y. Koshihara, J. Phys. Condens. Mater. 22, 052204 (2010)

    Article  Google Scholar 

  23. R. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976)

    Article  Google Scholar 

  24. E. McCafferty, A. Zettlemoyer, Discuss. Faraday Soc. 52, 239 (1971)

    Article  Google Scholar 

  25. E. Traversa, Sens. Actuators B 23, 135 (1995)

    Article  Google Scholar 

  26. T. Seiyama, N. Yamazoe, H. Arai, Sens. Actuators 4, 85 (1983)

    Article  Google Scholar 

  27. C. Lei, A. Bokov, Z.-G. Ye, J. Appl. Phys. 101, 084105 (2007)

    Article  Google Scholar 

  28. L. Wang, X. Wang, B. Li, Solid State Commun. 149, 1877 (2009)

    Article  Google Scholar 

  29. M. Chen, Z. Xu, R. Chu et al., Phys. B 433, 43 (2014)

    Article  Google Scholar 

  30. T. Mitsui, W. Westphal, Phys. Rev. 124, 1354 (1961)

    Article  Google Scholar 

  31. L.Y. Yeo, D. Lastochkin, S.-C. Wang, H.-C. Chang, Phys. Rev. Lett. 92, 133902 (2004)

    Article  Google Scholar 

  32. C. Kajtoch, Ceram. Int. 37, 387 (2011)

    Article  Google Scholar 

  33. C. Mao, X. Dong, G. Wang, S. Cao, C. Yao, K. Uchino, J. Am. Ceram. Soc. 93, 4011 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of Erasmus-Mundus program [EMECW, WELCOME Project Action 2 (scholarship application number WELC1104035 and WELC11011869)] respectively, Coordination Office: Politecnico di Torino, Turin, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abd El-razek Mahmoud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, A.Er., Afify, A.S. & Mohamed, A. The crossover of (Ba1−xCax)(Ti0.9Sn0.1)O3 piezoelectric ceramics from single-phase to composite with studying the structural and dielectric properties. J Mater Sci: Mater Electron 28, 11591–11602 (2017). https://doi.org/10.1007/s10854-017-6960-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6960-0

Keywords

Navigation