Skip to main content
Log in

Effect of processing conditions on (Ba1-xCax)(Ti0.9Sn0.1)O3 lead-free ceramics for the enhancement of structural, humidity sensing and dielectric properties

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

The present study reports detailed guidelines for the preparation of high-quality perovskite (Ba1-xCax)(Ti0.9Sn0.1)O3 (BCTS) (x = 0.0–0.1) lead-free ceramics by solid state reaction. The compositions (x = 0.0–0.04) exhibit orthorhombic–tetragonal phase transition (TO-T), except x ≥ 0.06 that shows a pure tetragonal structure phase which conformed by X-ray diffraction (XRD). The microstructure and purity of the sintered ceramics were examined using scanning electron microscope equipped with an energy dispersive spectrometer (SEM-EDS). Some pores existing in the grain boundary were observed at high concentrations of Ca content. Field emission scanning electron microscope (FE-SEM) was used to examine the morphology of sensing film of the calcined powder and it was prepared as a humidity sensor using screen-printing technique. All the compositions exhibited poor sensitivity toward the humidity sensing in the range of 0–98% RH at room temperature. Hot-stage microscope (HSM) has been used to investigate the sintering curve of the pure calcined powder and it was found that the suitable sintering temperature for obtaining a fully dense microstructure is 1400 °C. The highest values of permittivity (εr = 46,515, at 10 kHz) and piezoelectric coefficient (d33 = 510 pC/N) were achieved in the composition x = 0.02. The difference between alumina and platinum crucibles for the processing of the powders has been introduced, and by the aid of dispersive spectrometer analysis and it was indicated that use of alumina crucibles leads to the undesired presence of Al in the ceramics, which can be prevented by using a capped platinum crucibles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Jaffe, B., Cook Jr., W.R., Jaffe, H.: Piezoelectric Ceramics. Academic Press, New York (1971)

    Google Scholar 

  2. Takahashi, T.: Am. Ceram. Soc. Bull. 69, 691 (1990)

    CAS  Google Scholar 

  3. Lines, M.E., Glass, A.M.: Principles and Applications of Ferroelectric and Related Materials. Oxford University Press, Oxford (1979)

  4. Udomporn, A., Ananta, S.: J. Mater. Lett. 58, 1154 (2004)

    Article  CAS  Google Scholar 

  5. Forrester, J.S., Zobec, J.S., Phelan, D., Kisi, E.H.: J. Solid State Chem. 177(10), 3553 (2004)

  6. Wongmaneerung, R., Khamman, O., Yimnirun, R., Ananta, S.: J. Electroceram. 21, 798 (2008)

    Article  CAS  Google Scholar 

  7. Hollenstein, E., Damjanovic, D., Setter, N.: J. Eur. Ceram. Soc. 27, 4093 (2007)

    Article  CAS  Google Scholar 

  8. Zhang, S.J., Xia, R., Shrout, T. R.: J. Appl. Phys. 100, 104108 (2006)

    Article  Google Scholar 

  9. Zhao, L., Zhang, B.-P., Zhou, P.-F., Zhu, L.-F., Li, J.-F.: J. Eur. Ceram. Soc. 35, 533 (2015)

    Article  CAS  Google Scholar 

  10. Li, W., Xu, Z., Chu, R., Peng, F., Zang, G.: J. Eur. Ceram. Soc. 32, 517 (2012)

    Article  CAS  Google Scholar 

  11. Bao, H., Zhou, C., Xue, D., Gao, J., Ren, X.: J. Phys. D. Appl. Phys. 43, 465401 (2010)

    Article  Google Scholar 

  12. Li, W., Xu, Z., Chu, R., Fu, P., Zang, G.: J. Mater. Lett. 64, 2325 (2010)

    Article  CAS  Google Scholar 

  13. Zhu, L.-F., Zhang, B.-P., Zhao, L., Li, J.-F.: J. Mater. Chem. C. 2, 4764 (2014)

    Article  CAS  Google Scholar 

  14. Yao, Y.G., Zhou, C., Lv, D.C., Wang, D., Wu, H.J., Yang, Y. D., et al.: EPL. 98(2), 27008 (2012)

    Article  Google Scholar 

  15. Fujii, I., Shimizu, S., Yamashita, K., Nakashima, K., Kumada, N., Moriyoshi, C., Kuroiwa, Y., Fujikawa, Y., Tanaka, D., Furukawa, M., Wada, S.: Appl. Phys. Lett. 99, 202902-1-3 (2011)

    Article  Google Scholar 

  16. Wada, S., Nitta, M., Kumada, N., Tanaka, D., Furukawa, M., Ohno, S., Moriyoshi, C., Kuroiwa, Y.: Jpn. J. Appl. Phys. 47, 7678 (2008)

    Article  CAS  Google Scholar 

  17. Wang, J., Xu, B.K., Ruan, S.P., Wang, S.P.: Mater. Chem. Phys. 78, 746 (2003)

    Article  CAS  Google Scholar 

  18. Jingbo, L., Wenchao, L., Yanxi, Z., Zhimin, W.: Sens. Actuators B Chem. 75, 11 (2001)

    Article  CAS  Google Scholar 

  19. Mahmoud, A. E.-r., Viola, G., Afify, A.S., Babeer, A.M., Ferrairs M., J. Porous. Mater. https://doi.org/10.1007/s10934-016-0315-8 (In progress)

  20. Rodriguez-Navarro, C., Ruiz-Agudo, E., Luque, A., Rodriguez-Navarro, A.B., Ortega-Huertas, M.: Am. Mineral. 94, 578 (2009)

    Article  CAS  Google Scholar 

  21. Arvanitidis, I., Siche, D., Seetharaman, S.: Metall. Mater. Trans. A. 27(3), 409 (1996)

    Article  Google Scholar 

  22. Chen, M., Xu, Z., Chu, R., Qiu, H., Li, M., Liu, Y., Shao, L., Ma, S., Ji, W., Li, W., Gong, S., Li, G.: Physica B. 433, 43 (2014)

    Article  CAS  Google Scholar 

  23. Li, W., Xu, Z., Chu, R., Fu, P., Zang, G.: J. Am. Ceram. Soc. 94(12), 4131 (2011)

    Article  CAS  Google Scholar 

  24. Zhu, X.N., Zhang, W., Chen, X.M.: J. AIP Adv. 3, 082125 (2013)

    Article  Google Scholar 

  25. Zhu, L.-F., Zhang, B.-P., Zhao, X.-K., Zhao, L., Yao, F.-Z., Han, X., Zhou, P.-F., Jing-Feng: Appl. Phys. Lett. 103, 072905 (2013)

    Article  Google Scholar 

  26. McCafferty, E., Zettlemoyer, A.: Discuss. Faraday Soc. 52, 239 (1971)

    Article  Google Scholar 

  27. Traversa, E.: Sensors Actuators B Chem. 23, 135 (1995)

    Article  CAS  Google Scholar 

  28. Seiyama, T., Yamazoe, N., Arai, H.: Sens. Actuators B Chem. 4, 85 (1983)

    Article  CAS  Google Scholar 

  29. Lei, C., Bokov, A., Ye, Z.-G.: J. Appl. Phys. 101, 084105 (2007)

    Article  Google Scholar 

  30. Mahmoud, A.E.-r., Afify, A.S., Mohamed, A.: J. Mater. Sci. Mater. Electron. 28, 11591 (2017)

    Article  CAS  Google Scholar 

  31. Mitsui, T., Westphal, W.B.: Phys. Rev. 124, 1354 (1961)

    Article  CAS  Google Scholar 

  32. Yeo, D.L.Y., Lastochkin, D., Wang, S.-C., Chang, H.-C.: J. Phys. Rev. Lett. 92, 133902 (2004)

  33. Selmi, A., Khaldi, O., Mascot, M., Jomni, F., Carru, J.C.: J. Mater. Sci. Mater. Electron. 27, 11299 (2016)

    Article  CAS  Google Scholar 

  34. Wang, L., Wang, X., Li, B.: J. Solid State Commun. 149, 1877 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are immensely grateful to Prof. Jean Marc Tulliani (DISAT, Politecnico di Torino, Italy) for his support and for Dr. A. Mohamed (Chemistry Department, Taibah University, Saudi Arabia) for his comments on an earlier version of the manuscript.

Funding

Abd El-razek and A. Afify received financial support from Erasmus-Mundus program (EMECW, WELCOME Project Action 2 (scholarship application number WELC1104035 and ELC11011869), respectively, Coordination Office: Politecnico di Torino, Turin, Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abd El-razek Mahmoud.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, A.Er., Afify, A.S., Saed, E.M. et al. Effect of processing conditions on (Ba1-xCax)(Ti0.9Sn0.1)O3 lead-free ceramics for the enhancement of structural, humidity sensing and dielectric properties. J Aust Ceram Soc 55, 933–942 (2019). https://doi.org/10.1007/s41779-018-00305-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-018-00305-3

Keywords

Navigation