Skip to main content

Advertisement

Log in

Highly efficient direct friction method for flexible transparent electronic devices based on graphite films featured with economical, environmental and energy saving advantages

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this research, we developed a simple direct friction method to fabricate transparent conductive films. It is a highly efficient technology as the progress consumes only several minutes from raw materials to final products and the adhesion between matrix and functional layer is strong. Flexible transparent conductive films (TCFs) based on graphite and polyethylene terephthalate substrates exhibited satisfied properties with surface resistivity from 5.07 to 83.6 KΩ sq−1, optical transparency from 70 to 85% at 550 nm wavelength, and surface stability strong enough to protect them from aging under destructive surface treatments and bending. The main mechanisms are based on three key factors: (1) The lubrication property of two dimensional layered graphite, (2) Suitable wear properties of target transparent polymer matrix and rubbing medium, (3) A soft interlayer between glass block and rubbing medium. Furthermore, the samples show some potential applications such as flexible transparent heaters, flexible transparent humidity sensors and flexible transparent strain sensors. This technology has great potential to meet the requirements of transparent conductive electrodes for future optoelectronics: lightweight, flexible, economic, and especially compatible with large-scale manufacture. This method and the TCFs have some economical, environmental and energy saving advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Ruoho, T. Juntunen, T. Alasaarela, M. Pudas, I. Tittonen, Adv. Mater. Technol. 1, 1600204 (2016)

    Article  Google Scholar 

  2. Y. Zhou, M. Layani, F.Y.C. Boey, I. Sokolov, S. Magdassi, Y. Long, Adv. Mater. Technol. 1, 1600069 (2016)

    Article  Google Scholar 

  3. O.S. Elsherif, G.E.A. Muftah, O. Abubaker, I.M. Dharmadasa, J. Mater. Sci. 27, 12280 (2016)

    Google Scholar 

  4. F. Bella, A. Lamberti, S. Bianco, E. Tresso, C. Gerbaldi, C. F. Pirri, Adv. Mater. Technol. 1, 1600002 (2016)

    Google Scholar 

  5. S. Bykkam, K.V. Rao, R.N. Kumar, C.S. Chakra, T. Dayakar, J. Mater. Sci. 27, 12574 (2016)

    Google Scholar 

  6. S. Yang, E. Ng, N. Lu, Extreme Mech. Lett. 2, 37 (2015)

    Article  Google Scholar 

  7. S. Jun, B. Ju, J. Kim, Adv. Mater. Technol. 1, 1600062 (2016)

    Article  Google Scholar 

  8. C. Bianchi, J. Loureiro, P. Duarte, J. Marques, J. Figueira, I. Ropio, I. Ferreira, Adv. Mater. Technol. 1, 1600077 (2016)

    Article  Google Scholar 

  9. Q. Nian, M. Saei, Y. Hu, B. Deng, S. Jin, G.J. Cheng, Extreme Mech. Lett. 9, 531 (2016)

    Article  Google Scholar 

  10. J. Young, M. Yang, Adv. Mater. Technol. 1, 1600029 (2016)

    Article  Google Scholar 

  11. D.V.R. Kumar, K. Woo, J. Moon, Nanoscale 7, 17195 (2015)

    Article  Google Scholar 

  12. K. Ellmer, Nat. Photon. 6, 809 (2012)

    Article  Google Scholar 

  13. P. Paletti, R. Pawar, G. Ulisse, F. Brunetti, G. Iannaccone, G. Fiori, 2D Mater. 2, 045006 (2015)

    Article  Google Scholar 

  14. M. Itkis, A. Peller, X. Tian, E. Bekyarova, R. Haddon, Acc. Chem. Res. 48, 2270 (2015)

    Article  Google Scholar 

  15. J. Du, S. Pei, L. Ma, H. Cheng, Adv. Mater. 26, 1958 (2014)

    Article  Google Scholar 

  16. Y. Zhang, Z. Li, H. Li, J. Gao, J. Zhang, Y. Zeng, J. Mater. Sci. 25, 2692 (2014)

    Google Scholar 

  17. Y. Zhong, Z. Tian, G.P. Simon, D. Li, Mater. Today 18, 73 (2015)

    Article  Google Scholar 

  18. J.N. Coleman, Acc. Chem. Res. 46, 14 (2013)

    Article  Google Scholar 

  19. Q. Zheng, Z. Li, J. Yang, J. Kim, Prog. Mater. Sci. 64, 200 (2014)

    Article  Google Scholar 

  20. S. Bae, S. Kim, D. Shin, J. Ahn, B. Hong, Phys. Scr. T146, 014024 (2012)

    Article  Google Scholar 

  21. T.H. Bointon, G.F. Jones, A. De Sanctis, R. Hill-Pearce, M.F. Craciun, S. Russo, Sci. Rep. 5, 16464 (2015)

    Article  Google Scholar 

  22. Y. Yu, S. Jiang, W. Zhou, X. Miao, Y. Zeng, G. Zhang, J. He, J. Yi, W. Liu, Appl. Phys. Lett. 103, 011601 (2013)

    Article  Google Scholar 

  23. Y. Yu, S. Jiang, W. Zhou, X. Miao, Y. Zeng, G. Zhang, S. Liu, Sci. Rep. 3, 2697 (2013)

    Article  Google Scholar 

  24. S. Jiang, Y. Zeng, W. Zhou, X. Miao, Y. Yu, Sci. Rep. 6, 19313 (2016)

    Article  Google Scholar 

  25. L. Li, T. Zhang, Y. Liu, C. Zhu, J. Mater. Sci. 27, 3193 (2016)

    Google Scholar 

  26. Z. Li, H. Xie, D. Jun, Y. Wang, X. Wang, J. Li, J. Mater. Sci. 26, 6532 (2015)

    Google Scholar 

  27. W. Kim, S. Lee, D. Lee, I. Park, J. Bae, T. Lee, J. Kim, J. Park, Y. Cho, C. Cho, Sci. Rep. 5, 10715 (2015)

    Article  Google Scholar 

  28. M.M. Menamparambath, A.C. Muhammed, K.K. Hee, Y. Daejin, R. Jongwook, P.H. Cheol, K. Chan, C. Jae-Young, B. Seunghyun, Sci. Rep. 5, 16371 (2015)

    Article  Google Scholar 

  29. L. Jiang, X. Lu, X. Zheng, J. Mater. Sci. 25, 174 (2014)

    Google Scholar 

  30. M. Mohl, A. Dombovari, R. Vajtai, P. Ajayan, K. Kordas, Sci. Rep. 5, 13710 (2015)

    Article  Google Scholar 

  31. D. Kim, H. Kim, K. Seo, K. Kim, T. Kim, H. Kim, Sci. Rep. 5, 16838 (2015)

    Article  Google Scholar 

  32. S. Bae, H. Kim, Y. Lee, X. Xu, J. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Kim, Y. Song, Y. Kim, K. Kim, B. Ozyilmaz, J. Ahn, B. Hong, S. Iijima, Nat. Nanotechnol. 5, 579 (2010)

    Article  Google Scholar 

  33. J.K. Wassei, R.B. Kaner, Mater. Today 13, 52 (2010)

    Article  Google Scholar 

  34. Y. Yu, S. Jiang, G. Zhang, W. Zhou, X. Miao, Y. Zeng, J. Wang, J. He, L. Zhang, Appl. Phys. Lett. 101, 073113 (2012)

    Article  Google Scholar 

  35. Y. Yu, S. Jiang, W. Zhou, X. Miao, Y. Zeng, G. Zhang, Y. Zhang, Q. Zhang, H. Zhao, Appl. Phys. Lett. 101, 023119 (2012)

    Article  Google Scholar 

  36. M. Segev-Bar, N. Bachar, Y. Wolf, B. Ukrainsky, L. Sarraf, H. Haick, Adv. Mater. Technol. 1, 1600206 (2016)

    Google Scholar 

  37. A.S. Pawbake, R.G. Waykar, D.J. Late, S.R. Jadkar, ACS Appl. Mater. Interfaces 8, 3359 (2016)

    Article  Google Scholar 

  38. J.M. Nassar, M.D. Cordero, A.T. Kutbee, M.A. Karimi, G.A.T. Sevilla, A.M. Hussain, A. Shamim, M.M. Hussain, Adv. Mater. Technol. 1, 1600004 (2016)

    Article  Google Scholar 

  39. Y. Yu, L. Ye, Y. Song, Y. Guan, J. Zang, Extreme Mech. Lett. 11, 128 (2017)

    Article  Google Scholar 

  40. Y. Wang, C. Shen, W. Lou, F. Shentu, C. Zhong, X. Dong, L. Tong, Appl. Phys. Lett. 109, 031107 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge Analytical and Testing Center of Wuhan University of Technology, for testing our samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Q., Li, W. Highly efficient direct friction method for flexible transparent electronic devices based on graphite films featured with economical, environmental and energy saving advantages. J Mater Sci: Mater Electron 28, 10758–10764 (2017). https://doi.org/10.1007/s10854-017-6852-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6852-3

Keywords

Navigation