Skip to main content

Advertisement

Log in

Electric-current-assisted sintering of nanosilver paste for copper bonding

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanosilver paste is a promising lead-free die-attach material suitable for power electronic packaging, especially for high-temperature applications. Compared with conventional hot-pressing method, electric-current-assisted sintering (ECAS) can greatly improve the efficiency and properties of sintered nanosilver joint. In this paper, the rapid sintering behaviors and mechanical properties, including temperature profile, removal of organics, shrinkage, pore size, particle size, and shear strength, of nanosilver joint at different stages of ECAS were studied to help understand the fundamental mechanism. Based on the results, rapid sintering by high direct current, e.g., 6 kA, can sinter nanosilver for copper bonding at low temperature within 1200 ms under uniaxial load, e.g., 10 MPa. And the ECAS process can be divided into three stages. At the initial stage, the removal of most organics and the rearrangement of nanosilver particles cause rapid shrinkage of the joint. After initial stage the nanosilver particles come into direct contact with each other, and the shear strength of the joint increases quickly due to the diffusion of atoms through the melted region between the particles. At the final stage, further shrinkage of the joint proceeds by plastic deformation under loading and high temperature (above 400 °C). The elimination of crystal defects also contributes to the shrinkage at the final stage. The sintering of nanosilver finally increases the shear strength of the joint to about 50 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. X. Li, G. Chen, L. Wang, Y.H. Mei, X. Chen, G.Q. Lu, Mechanical property evaluation of nano-silver paste sintered joint using lap-shear test. Mater. Sci. Eng. A 579, 108–113 (2013)

    Article  Google Scholar 

  2. R.W. Johnson, J.L. Evans, P. Jacobsen, J.R. Thompson, M. Christopher. The changing automotive environment: high-temperature electronics. IEEE Trans. Electron. Packag.Manuf 27 164–176 (2004)

    Article  Google Scholar 

  3. D.J. Yu, X. Chen, G. Chen, G.Q. Lu, Z.Q. Wang, Applying Anand model to low-temperature sintered nanoscale silver paste chip attachment. Mater. Des. 30, 4574–4579 (2009)

    Article  Google Scholar 

  4. G. Chen, L. Yu, Y.H. Mei, X. Li, X. Chen, G.Q. Lu, Uniaxial ratcheting behavior of sintered nanosilver joint for electronic packaging. Mater. Sci. Eng. A 591, 121–129 (2014)

    Article  Google Scholar 

  5. Y.H. Mei, G. Chen, X. Li, G.Q. Lu, X. Chen. Evolution of curvature under thermal cycling in sandwich assembly bonded by sintered nanosilver paste. Solder. Surf. Mt. Technol 25, (2013) 107–116

    Article  Google Scholar 

  6. Y. H Mei, G. Chen, G.Q. Lu, X. Chen. Effect of joint sizes of low-temperature sintered nano-silver on thermal residual curvature of sandwiched assembly. Int. J. Adhes. Adhes. 35, 88–93 (2013)

    Article  Google Scholar 

  7. J.G. Bai, Z.Z. Zhang, J.N. Calata, G.Q. Lu. Low-temperature sintered nanoscale silver as a novel semiconductor device-metallized substrate interconnect material. IEEE Trans. Compon. Packag.Technol. 29, 589–593 (2006)

    Article  Google Scholar 

  8. Y.H. Mei, T. Wang, X. Cao, G. Chen, G.Q. Lu, X. Chen. Transient thermal impedance measurements on low-temperature-sintered nanoscale silver joints. J. Electron. Mater. 41, 3152–3160 (2012)

    Article  Google Scholar 

  9. L. Coppola, D. Huff, F. Wang, R. Burgos, D. Boroyevich, Survey on high-temperature packaging materials for SiC-based power electronics modules. In: Power Electronics Specialists Conference, Orlando (2007), pp. 2234–2240

  10. E. Ide, S. Angata, A. Hirose, K. Kobayashi. Metal-metal bonding process using Ag metallo-organic nanoparticles. Acta Mater. 53, 2385–2393 (2005)

    Article  Google Scholar 

  11. H. Alarifi, A. Hu, M. Yavuz, Y.N. Zhou. Silver nanoparticle paste for low-temperature bonding of copper. J. Electron. Mater. 40, 1394–1402 (2011)

    Article  Google Scholar 

  12. Y.H. Mei, G.Q. Lu, X. Chen, S.F. Luo, D. Ibitayo. Migration of sintered nanosilver die-attach material on alumina substrate between 250℃and 400℃in dry air. IEEE. Trans. Device Mater. Reliab. 11, 316–322 (2011)

    Article  Google Scholar 

  13. K. Suganuma, S. Sakamoto, N. Kagami, D. Wakuda, K.S. Kim, M. Nogi, Low-temperature low-pressure die attach with hybrid silver particle paste. Microelectron. Reliab. 52, 375–380 (2012)

    Article  Google Scholar 

  14. J. Yan, G. Zou, A.P. Wu, J. Ren, J. Yan, A. Hu, Y. Zhou, Pressureless bonding process using Ag nanoparticle paste for flexible electronics packaging. Scr. Mater. 66, 582–585 (2012)

    Article  Google Scholar 

  15. X. Li, G. Chen, X. Chen, G.Q. Lu, L. Wang, Y.H. Mei. Mechanical property evaluation of nano-silver paste sintered joint using lap-shear test. Solder. Surf. Mt. Technol. 24, 120–126 (2012)

    Article  Google Scholar 

  16. J.G. Bai, T.G. Lei, J.N. Calata, G.Q. Lu, Control of nanosilver sintering attained through organic binder burnout. J. Mater. Res. 22, 3494 (2007)

    Article  Google Scholar 

  17. R. Roy, D. Agrawal, J. Cheng, S. Gedevanishvili, Full sintering of powdered-metal bodies in a microwave field. Nature 399, 668–670 (1999)

    Article  Google Scholar 

  18. M. Agarwala, D. Bourell, J. Beaman, H. Marcus, J. Barlow, Direct selective laser sintering of metals. Rapid Prototyping J 1, 26–36 (1995)

    Article  Google Scholar 

  19. R. Orrù, R. Licheri, A.M. Locci, A. Cincotti, G. Cao. Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater. Sci. Eng. R 63, 127–287 (2009)

    Article  Google Scholar 

  20. M. Oghbaei, O. Mirzaee, Microwave versus conventional sintering: A review of fundamentals, advantages and applications. J. Alloys Compd. 494, 175–189 (2010)

    Article  Google Scholar 

  21. D. He, Z. Fu, W. Wang, J. Zhang, Z.A. Munir, P. Liu, Temperature-gradient joining of Ti–6Al–4 V alloys by pulsed electric current sintering. Mater. Sci. Eng. A 535, 182–188 (2012)

    Article  Google Scholar 

  22. Z. Munir, U. Anselmi-Tamburini, M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater. Sci. 41, 763–777 (2006)

    Article  Google Scholar 

  23. Y. Fu, C. Shearwood, B. Xu, L. Yu, K. Khor. Characterization of spark plasma sintered Ag nanopowders. Nanotechnology 21, 115707 (2010)

    Article  Google Scholar 

  24. M.L. Allen, M. Aronniemi, T. Mattila, A. Alastalo, K. Ojanperä, M. Suhonen, H. Seppä, Electrical sintering of nanoparticle structures. Nanotechnology 19, 175201 (2008)

    Article  Google Scholar 

  25. Y.H. Mei, Y. J Cao, G. Chen, X. Li, G. Lu, X. Chen. Rapid sintering nanosilver joint by pulse current for power electronics packaging. IEEE. Trans. Device Mater. Reliab. 13, 258–265 (2013)

    Article  Google Scholar 

  26. Y.H. Mei, Y. J Cao, G. Chen, X. Li, G. Lu, X. Chen, Characterization and reliability of sinter nanosilver joints by a rapid current-assisted method for power electronic packaging. IEEE. Trans. Device Mater. Reliab. 14, (2014) 262–267

    Article  Google Scholar 

  27. R. Chaim, Densification mechanisms in spark plasma sintering of nanocrystalline ceramics. Mater. Sci. Eng. A 443, 25–32 (2007)

    Article  Google Scholar 

  28. T.G. Lei, J.N. Calata, G.Q. Lu, X. Chen, S.F. Luo, Low-temperature sintering of nanoscale silver paste for attaching large-area (>100mm2) chips. IEEE Trans. Compon. Packag. Manuf. Technol. 33, 98–104 (2010)

    Article  Google Scholar 

  29. Y.H. Mei, G. Chen, Y. J Cao, X. Li, D. Han, X. Chen, Simplification of low-temperature sintering nanosilver for power electronics packaging. J. Electron. Mater 42, 1209–1218 (2013)

    Article  Google Scholar 

  30. Z.L. Li, F. Becker, M.P. Stoll, Z. Wan, Evaluation of six methods for extracting relative emissivity spectra from thermal infrared images. Remote Sens. Environ 69, 197–214 (1999)

    Article  Google Scholar 

  31. E. Helland, R. Occelli, L. Tadrist, Numerical study of cluster formation in a gas–particle circulating fluidized bed. Powder Technol 110, 210–221 (2000)

    Article  Google Scholar 

  32. W. Kingery, Densification during sintering in the presence of a liquid phase. I. Theory. J. Appl. Phys 30, 301–306 (1959)

    Article  Google Scholar 

  33. C. Tekmen, I. Ozdemir, U. Cocen, K. Onel, The mechanical response of Al–Si–Mg/SiCp composite: influence of porosity. Mater. Sci. Eng. A 360, 365–371 (2003)

    Article  Google Scholar 

  34. Q. Mei, K. Lu, Melting and superheating of crystalline solids: from bulk to nanocrystals. Prog. Mater. Sci. 52, 1175–1262 (2007)

    Article  Google Scholar 

  35. G. Allen, R. Bayles, W. Gile, W. Jesser, Small particle melting of pure metals. Thin Solid Films 144, 297–308 (1986)

    Article  Google Scholar 

  36. A. Hu, J.Y. Guo, H. Alarifi, G. Patane, Y. Zhou, G. Compagnini, C.X. Xu, Low temperature sintering of Ag nanoparticles for flexible electronics packaging. Appl. Phys. Lett. 97, 153117 (2010)

    Article  Google Scholar 

  37. K. Vanmeensel, A. Laptev, J. Hennicke, J. Vleugels, O. Van der Biest. Modelling of the temperature distribution during field assisted sintering. Acta Mater. 53, 4379–4388 (2005)

    Article  Google Scholar 

  38. K.S. Moon, H. Dong, R. Maric, S. Pothukuchi, A. Hunt, Y. Li, C. Wong. Thermal behavior of silver nanoparticles for low-temperature interconnect applications. J. Electron. Mater. 34, 168–175 (2005)

    Article  Google Scholar 

  39. J. She, K. Ueno, Effect of additive content on liquid-phase sintering on silicon carbide ceramics. Mater. Res. Bull 34, 1629–1636 (1999)

    Article  Google Scholar 

  40. Y. Wang, L. Zhou, M. Zhang, X. Chen, J.M. Liu, Z. Liu, Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering. Appl. Phys. Lett. 84, 1731–1733 (2004)

    Article  Google Scholar 

  41. H.A. Alarifi, M. Atis, C. Özdoğan, A. Hu, M. Yavuz, Y. Zhou, Molecular dynamics simulation of sintering and surface premelting of silver nanoparticles. Mater. Trans. 54, 884–889 (2013)

    Article  Google Scholar 

  42. X. Chen, R. Li, K. Qi, G.Q. Lu, Tensile behaviors and ratcheting effects of partially sintered chip-attachment films of a nanoscale silver paste. J. Electron. Mater. 37, 1574–1579 (2008)

    Article  Google Scholar 

  43. Z. Zhang, G.Q. Lu, Pressure-assisted low-temperature sintering of silver paste as an alternative die-attach solution to solder reflow. IEEE Trans. Electron. Packag. Manuf. 25, 279–283 (2002)

    Article  Google Scholar 

  44. T. Wang, X. Chen, G.Q. Lu, G.Y. Lei, Low-temperature sintering with nano-silver paste in die-attached interconnection. J. Electron. Mater. 36, 1333–1340 (2007)

    Article  Google Scholar 

  45. Y. Akada, H. Tatsumi, T. Yamaguchi, A. Hirose, T. Morita, E. Ide. Interfacial bonding mechanism using silver metallo-organic nanoparticles to bulk metals and observation of sintering behavior. Mater. Trans. 49, 1537–1545 (2008)

    Article  Google Scholar 

  46. D.H. Kim, C.H. Kim, Effect of heating rate on pore shrinkage in yttria-doped zirconia. J. Am. Ceram. Soc. 76, 1877–1878 (1993)

    Article  Google Scholar 

  47. J.G. Bai, J.N. Calata, G. Lei, G.Q. Lu, Thermomechanical reliability of low-temperature sintered silver die-attachment. In: The tenth intersociety conference on thermal and thermomechanical phenomena in electronics systems, New York, (2006), pp 1126–1130

  48. N. Wang, Z. Wang, K. Aust, U. Erb, Effect of grain size on mechanical properties of nanocrystalline materials. Acta Mater. 43, 519–528 (1995)

    Article  Google Scholar 

  49. J. Burke. Role of grain boundaries in sintering. J. Am. Ceram. Soc. 40, 80–85 (1957)

    Article  Google Scholar 

  50. R. German, J. Lathrop, Simulation of spherical powder sintering by surface diffusion. J. Mater. Sci. 13, 921–929 (1978)

    Article  Google Scholar 

  51. N. Hirosaki, Y. Akimune, M. Mitomo, Effect of grain growth of β-Silicon Nitride on strength, weibull modulus, and fracture toughness. J. Am. Ceram. Soc. 76, 1892–1894 (1993)

    Article  Google Scholar 

  52. M.J. Mayo. Processing of nanocrystalline ceramics from ultrafine particles. Int. Mater. Rev. 41, 85–115 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge the financial supports from the National Natural Science Foundation of China (No. 61334010), the National High Technology Research and Development Program of China (No. 2016YFB0100602), and and the Tianjin Municipal Natural Science Foundation (Nos. 13ZCZDGX01106 and 13JCQNJC06600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mei, Y., Li, L., Li, X. et al. Electric-current-assisted sintering of nanosilver paste for copper bonding. J Mater Sci: Mater Electron 28, 9155–9166 (2017). https://doi.org/10.1007/s10854-017-6649-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6649-4

Keywords

Navigation