Skip to main content
Log in

Effect of ZnO coating on two different sized α-Fe nanoparticles: synthesis and detailed investigation of their structural, optical, hyperfine and magnetic characteristics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The growth of metal–semiconductor (α-Fe/ZnO) bi-functional nanocomposites (NCs) by a wet-chemical route has been reported in the present article. Structural characterization by X-ray diffraction measurements confirmed the formation of the pure phase nanocomposite along with some oxide impurity appeared as the surface passivation layer on Fe nanoparticles. Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopic studies have demonstrated the nature of the functional groups present in the samples. A red shift in the ultraviolet–visible (UV–vis) spectrum of the NCs indicates the band gap modification of ZnO due to the presence of metallic α-Fe nanoparticles in close proximity. Photoluminescence (PL) emission spectra of the NCs show a blue shift with respect to the pristine ZnO which corroborates the close-proximity effect. The successful formation of nanocomposite is also evidenced from the band shift observed in UV–Vis and PL spectra. Some defect related emission peaks are also traced in the PL spectra. Magnetization measurements reveal that the saturation magnetization is very high for these NCs attributed to the dominant surface contribution. Mössbauer study traces some paramagnetic phase formed due to the surface passivation layer along-with larger particles of Fe in the ordered state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. X.J. Yin, K. Peng, A.P. Hu, L.P. Zhou, J.H. Chen, Y.W. Du, Preparation and characterization of core–shell structured Co/SiO2 nanosphere. J. Alloys Compd. 479, 372–375 (2009). doi:10.1016/j.jallcom.2008.12.070

    Article  Google Scholar 

  2. J. Xu, H.B. Yang, W.Y. Fu, W.H. Fan, Q.R. Zhu, M.H. Li, G.T. Zou, Synthesis and characterization of nickel coated by zinc oxide: bifunctional magnetic-optical nanocomposites. J. Alloys Compd. 458, 119–122 (2008). doi:10.1016/j.jallcom.2007.03.149

    Article  Google Scholar 

  3. S.C. Wuang, K.G. Neoh, E.T. Kang, D.W. Pack, D.E. Leckband, Heparinized magnetic nanoparticles: in-vitro assessment for biomedical applications. Adv. Funct. Mater. 16, 1723–1730 (2006). doi:10.1002/adfm.200500879

    Article  Google Scholar 

  4. N. Nasongkla, E. Bey, J. Ren, H. Ai, C. Khemtong, J.S. Guthi, S.-F. Chin, A.D. Sherry, D.A. Boothman, J. Gao, Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett. 6, 2427–2430 (2006). DOI:10.1021/nl061412u

    Article  Google Scholar 

  5. H. Kim, M. Achermann, L.P. Balet, J.A. Hollingsworth, V.I. Klimov, Synthesis and characterization of Co/CdSe core/shell nanocomposites: bifunctional magnetic-optical nanocrystals. J. Am. Chem. Soc. 127, 544–546 (2005). doi:10.1021/ja047107x

    Article  Google Scholar 

  6. A. Okasha, M. B. Mohamed, S. Negm, H. Talaat, Weak exciton–plasmon and exciton–phonon coupling in chemically synthesized Ag/CdSe metal/semiconductor hybrid nanocomposite, Physica E 44, 2094–2098 (2012). doi:10.1016/j.physe.2012.06.022

    Article  Google Scholar 

  7. X.G. Liu, D.Y. Geng, H. Meng, P.J. Shang, Z.D. Zhang, Microwave-absorption properties of ZnO-coated iron nanocapsules. Appl. Phys. Lett. 92, 173117 (2008). doi:10.1063/1.2919098

    Article  Google Scholar 

  8. S. P. Pati, B. Bhushan, A. Basumallick, S. Kumar, D. Das, Exchange bias and suppression of superparamagnetism of α-Fe nanoparticles in NiO matrix, Mater. Sci. Eng. B 176, 1015–1020 (2011). doi:10.1016/j.mseb.2011.05.019

    Article  Google Scholar 

  9. S.P. Pati, S. Kumar, D. Das, Memory effects in exchange coupled Fe/Co3O4 nanocomposites, Mater. Chem. Phys. 137, 303–309 (2012). doi:10.1016/j.matchemphys.2012.09.025

    Article  Google Scholar 

  10. S.P. Pati, A. Roychowdhury, S. Kumar, D. Das, Signature of exchange bias and spin-glass like phenomena in Fe/CoO nanocomposite. J. Appl. Phys. 113, 17D708 (2013). doi:10.1063/1.4795441

    Article  Google Scholar 

  11. S.P. Pati, B. Bhushan, D. Das, Exchange interaction at the interface of Fe–NiO nanocomposites. J. Solid State Chem. 183, 2903–2909 (2010). doi:10.1016/j.jssc.2010.09.037

    Article  Google Scholar 

  12. S. P. Pati and D. Das, Interfacial magnetic phenomena of mechanosynthesized Fe nanoparticles in MnO matrix, Ceram. Int. 40, 10343–10349 (2014). doi:10.1016/j.ceramint.2014.03.007

    Article  Google Scholar 

  13. S.P. Pati, D. Das, Interparticle and collective states of interactions in mechanically milled Fe/CoO nanocomposites. J. Nanoparticle Res. 16, 2278 (2014). doi:10.1007/s11051-014-2278-5

    Article  Google Scholar 

  14. K. Raj, R. Moskowitz, R. Casciari, Advances in ferrofluid technology, J. Magn. Magn. Mater. 149, 174–180 (1995). doi:10.1016/0304-8853(95)00365-7

    Article  Google Scholar 

  15. W-x Zhang, Nanoscale iron particles for environmental remediation: an overview, J. Nanoparticle Res., 5, 323–332 (2003). doi:10.1023/A:1025520116015

    Article  Google Scholar 

  16. H.-M. Xiong, Z.-D. Wang, D.-P. Liu, J.-S. Chen, Y.-G. Wang, Y-Y Xia. Bonding polyether onto ZnO nanoparticles: an effective method for preparing polymer nanocomposites with tunable luminescence and stable conductivity Adv. Funct. Mater. 15, 1751–1756 (2005)

    Article  Google Scholar 

  17. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S.V. Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001). doi:10.1126/science.1065389

    Article  Google Scholar 

  18. G.A. Prinz, Magnetoelectronics., Science 282, 1660–1663 (1998). doi:10.1126/science.282.5394.1600

    Article  Google Scholar 

  19. Y. Song, E. Wang, C. Tian, B. Mao, C Wanga, Semiconductor/metal nanocomposites formed by in situ reduction method in multilayer thin films. Mater. Res. Bull. 44, 30–34 (2009). doi:10.1016/j.materresbull.2008.04.012

    Article  Google Scholar 

  20. X. Liu, D. Geng, P. Shang, H. Meng, F. Yang, B. Li, D. Kang, Z. Zhang, Fluorescence and microwave-absorption properties of multi-functional ZnO-coated α-Fe solid-solution nanocapsules. J. Phys. D: Appl. Phys. 41, 175006 (2008). doi:10.1088/0022-3727/45/23/239502

    Article  Google Scholar 

  21. Z.X. Yang, W. Zhong, C.T. Au, X. Du, H.A. Song, X.S. Qi, X.J. Ye, M.H. Xu, Y.W. Du, Novel Photoluminescence properties of magnetic Fe/ZnO composites: self-assembled ZnO nanospikes on Fe nanoparticles fabricated by hydrothermal method. J. Phys. Chem. C 113, 21269–21273 (2009). DOI:10.1021/jp903130t

    Article  Google Scholar 

  22. A. Roychowdhury, S.P. Pati, A.K. Mishra, S. Kumar, D. Das, Magnetically addressable fluorescent Fe3O4/ZnO nanocomposites: structural, optical, and magnetization studies. J. Phys. Chem. Solids 74, 811–818 (2013). DOI:10.1016/j.jpcs.2013.01.012

    Article  Google Scholar 

  23. V. U. Varov, I. Popov, Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials, Mater. Charact. 58, 883–891 (2007). doi:10.1016/j.matchar.2006.09.002

    Article  Google Scholar 

  24. B. Lin, Z. Fu, Y. Jia, Green luminescent center in undoped zinc oxide films deposited on silicon substrates., Appl. Phys. Lett. 79, 943–945 (2001). 10.1063/1.1394173

    Article  Google Scholar 

  25. A. Roychowdhury, S. P. Pati, S. Kumar, D. Das, Effects of magnetite nanoparticles on optical properties of zinc sulfide in fluorescent-magnetic Fe3O4/ZnS nanocomposites, Powder Technol. 254, 583–590 (2014). doi:10.1016/j.powtec.2014.01.076

    Article  Google Scholar 

  26. S.P. Roychowdhury, S. Pati, D. Kumar, Das, Tunable properties of magneto-optical Fe3O4/CdS nanocomposites on size variation of the magnetic component, Mater. Chem. Phys. 151, 105–111 (2015). doi:10.1016/j.matchemphys.2014.11.043

    Article  Google Scholar 

  27. U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, H. Morkoc, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005). doi:10.1063/1.1992666

    Article  Google Scholar 

  28. Y. Tan, Y. Zheng, N. Wang, A. Zhang, Controlling the properties of solvent-free Fe3O4 nanofluids by Corona structure, Nano Micro Lett. 4(4), 208–214 (2012). doi:10.3786/nml.v4i4.p208-214

    Article  Google Scholar 

  29. L. Song, S. Zhang, B. Chen, J. Ge, X. Jia, Colloids and surfaces A: physicochemical and engineering aspects, Colloids Surf. A 360, 1–5 (2010). doi:10.1016/j.colsurfa.2010.01.012

    Article  Google Scholar 

  30. J. Coates, Interpretation of infrared spectra: a practical approach, in Encyclopedia of Analytical Chemistry, ed. by R.A. Meyers (Wiley, Chichester, 2000), pp. 10815–10837.

    Google Scholar 

  31. N.-D. Tam, K. Singh, M. Meyyappan, M. M. Oye, Vertical ZnO nanowire growth on metal substrates. Nanotechnology 23, 194015 (2012). doi:10.1088/0957-4484/23/19/194015

    Article  Google Scholar 

  32. H.-M. Cheng, H.-C. Hsu, Y.-K. Tseng, L.-J. Lin, W.-F. Hsieh, Raman scattering and efficient uv photoluminescence from well-aligned ZnO nanowires epitaxially grown on GaN buffer layer. J. Phys. Chem. B 109, 8749–8754 (2005). DOI:10.1021/jp0442908

    Article  Google Scholar 

  33. D. Cullity, Introduction to Magnetic Materials, (Addison-Wiley, New York, 1972), pp. 171–190

    Google Scholar 

  34. J. García and G. Subías, The Verwey transition—a new perspective, J. Phys.: Condens. Matter 16, R145–R178 (2004). doi:10.1088/0953-8984/16/7/R01

    Google Scholar 

Download references

Acknowledgements

Authors express their gratitude to Dr. A.K. Sinha and Dr. V. Ganesan for their kind support and encouragements. Authors also thank to Dr. A. Banerjee and Dr. V. G. Sathe, UGC DAE CSR, Indore for Magnetization measurements and Raman measurements respectively, Dr. A. Saha, UGC DAE CSR, Kolkata for the optical measurements, Mr. Shubhabrata Chakraborty (IIEST, Shibpur) for transmission electron microscope measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manojit Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathore, A.K., Pati, S.P., Ghosh, M. et al. Effect of ZnO coating on two different sized α-Fe nanoparticles: synthesis and detailed investigation of their structural, optical, hyperfine and magnetic characteristics. J Mater Sci: Mater Electron 28, 6950–6958 (2017). https://doi.org/10.1007/s10854-017-6395-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6395-7

Keywords

Navigation