Skip to main content
Log in

Synthesis and characterization of Dy2O3 nanostructures: enhanced photocatalytic degradation of rhodamine B under UV irradiation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Dysprosium oxide (Dy2O3) nanoparticles have been successfully synthesized via a novel facile solvent-less solid state method. Dysprosium oxide nanostructures were prepared by heat treatment in air at 500 °C for 2 h via Schiff-base ligand as a capping agent and dysprosium source. The effect of the Schiff base ligand (N,N-Bis(salicylidene)ethylenediamine (H2salen)) as a capping agent on product by different molar ratios of dysprosium nitrate and Schiff base ligand were investigated to reach optimum conditions of Dy2O3 nanoparticles such as size and morphology. Analytical method such as Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray, X-ray diffraction and UV–Vis diffuse reflectance spectroscopy were employed to characterized the as-prepared nanostructures. The results shows that the molar ration and calcination temperatures of Schiff base ligand and dysprosium nitrate have substantial and key effect on the size and morphology of the Dy2O3. In addition, the photocatalytic activity of Dy2O3 nanostructure was studied by the photocatalytic degradation of the rhodamine B as cationic dye under UV irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2
Fig. 10

Similar content being viewed by others

References

  1. M. Kamruddin, P.K. Ajikumar, R. Nithya, A.K. Tyagi, B. Raj, Scripta Mater. 50, 417–422 (2004)

    Article  Google Scholar 

  2. S. Mortazavi-Derazkola, S. Zinatloo-Ajabshir, M. Salavati-Niasari, J. Mater. Sci. 26, 5658–5667 (2015)

    Google Scholar 

  3. M. Salavati-Niasari, F. Davar, M.R. Loghman-Estarki, J. Alloys Compd. 494, 199–204 (2010)

    Article  Google Scholar 

  4. A. Sobhani, M. Salavati-Niasari, Ceram. Int. 40, 8173–8182 (2014)

    Article  Google Scholar 

  5. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Int. J. Appl. Ceram. Technol. 11, 654–662 (2014)

    Article  Google Scholar 

  6. F. Mohandes, M. Salavati-Niasari, Mater. Sci. Eng. C 40, 288–298 (2014)

    Article  Google Scholar 

  7. J. Shen, L.D. Sun, C.H. Yan, Dalton. Trans. 42, 5687–5697 (2008)

    Article  Google Scholar 

  8. Z. Zhou, H. Hu, H. Yang, Y. Tao, H. Kewei, Yu.. Mengxiao, L. Fuyou, H. Chunhui, Chem. Commun. 39, 4786–4788 (2008)

    Article  Google Scholar 

  9. R. Si, M. Flytzani-Stephanopoulos, Angew. Chem. Int. Ed. 47, 2884–2887 (2008)

    Article  Google Scholar 

  10. S. Mortazavi-Derazkola, S. Zinatloo-Ajabshir, M. Salavati-Niasari, RSC Adv. 5, 56666–56676 (2015)

    Article  Google Scholar 

  11. P. Mele, C. Artini, A. Ubaldini, G.A. Costa, M.M. Carnasciali, R. Masini, J. Phys. Chem. Solids 70, 276–280 (2009)

    Article  Google Scholar 

  12. Y. Yamada, M. Segawa, F. Sato, T. Kojima, S. Sato, J. Mol. Catal. A 346, 79–86 (2011)

    Article  Google Scholar 

  13. S. Gai, C. Li, P. Yang, J. Lin, Chem. Rev. 114, 2343–2389 (2014)

    Article  Google Scholar 

  14. H. Khojasteh, M. Salavati-Niasari, S. Mortazavi-Derazkola. J. Mater. Sci. 27, 3599–3607 (2015)

    Google Scholar 

  15. Z.G. Yan, C.H. Yan, J. Mater. Chem. 18, 5046–5059 (2008)

    Article  Google Scholar 

  16. Q. Tang, Z. Liu, S. Li, S. Zhang, X. Liu, Y. Qian, J. Cryst. Growth 259, 208–214 (2003)

    Article  Google Scholar 

  17. Y. He, Y. Tian, Y. Zhu, Chem. Lett. 32, 862 (2003)

    Article  Google Scholar 

  18. A.K. Nohman, H.M. Ismail, G.A.M. Hussein, J. Anal. Appl. Pyrolysis 34, 265–278 (1995)

    Article  Google Scholar 

  19. G.B. Kumar, S. Buddhudu, Ceram. Int. 35, 521–525 (2009)

    Article  Google Scholar 

  20. J. Kuang, Y. Liu, J. Zhang, J. Solid State Chem 179, 266–269 (2006)

    Article  Google Scholar 

  21. T. Sreethawong, S. Chavadej, S. Ngamsinlapasathian, S. Yoshikawa, J. Colloid. Interface Sci. 300, 219–224 (2006)

    Article  Google Scholar 

  22. S. Yin, S. Aktia, M. Shinozaki, R. Li, T. Sato, J. Mater. Sci. 43, 2234–2239 (2008)

    Article  Google Scholar 

  23. G. Wang, Z. Wang, Y. Zhang, G. Fei, L. Zhang, Nanotechnology 15, 1307–1311 (2004)

    Article  Google Scholar 

  24. M. Chandrasekhar, H. Nagabhushana, K.H. Sudheerkumar, N. Dhananjaya, S.C. Sharma, D. Kavyashree, C. Shivakumara, B.M. Nagabhushana, Mater. Res. Bull. 55, 237–245 (2014)

    Article  Google Scholar 

  25. M. Salavati-Niasari, J. Javidi, F. Davar, Ultrason. Sonochem. 17, 870–877 (2010)

    Article  Google Scholar 

  26. S. Mortazavi-Derazkola, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Ceram. Int. 41, 9593–9601 (2015)

    Article  Google Scholar 

  27. Z. Hens, I. Moreels, B. Fritzinger, J. Martins, J. Comprehens. Nanosci. Technol. 5, 21–49 (2011)

    Article  Google Scholar 

  28. S. Mortazavi-Derazkola, M.R. Naimi-Jamal, S.M. Ghoreishi, 13, 1123–1129 (2016)

  29. N. KrishnaChandar, R. Jayavel, J. Phys. Chem. Solids 73, 1164–1169 (2012)

    Article  Google Scholar 

  30. M. Chandrasekhar, D.V. Sunitha, N. Dhananjaya, H. Nagabhushana, S.C. Sharma, B.M. Nagabhushana, C. Shivakumara, R.P.S. Chakradhar, Mater. Res. Bull 47, 2085–2094 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the council of Iran National Science Foundation (INSF) and University of Kashan for supporting this work by Grant No. (159271/4444).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Salavati-Niasari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safari-Amiri, M., Mortazavi-Derazkola, S., Salavati-Niasari, M. et al. Synthesis and characterization of Dy2O3 nanostructures: enhanced photocatalytic degradation of rhodamine B under UV irradiation. J Mater Sci: Mater Electron 28, 6467–6474 (2017). https://doi.org/10.1007/s10854-017-6333-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6333-8

Keywords

Navigation