Skip to main content
Log in

Engineered WO3 nanorods for conformal growth of WO3/BiVO4 core–shell heterojunction towards efficient photoelectrochemical water oxidation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

High aspect ratio WO3 nanorods were obtained by post growth transformation of ammonium tungsten bronze ((NH4)0.33·WO3) nanorods which are grown via a facile solvothermal method. Influence of capping agents, reaction temperature and annealing temperature on the morphologies and performances of (NH4)0.33·WO3 films have been investigated and the growth mechanism of (NH4)0.33·WO3 nanorods was also explored. The results show that NH4 + plays a key role for formation of rod-like morphology at appropriate reaction temperature. Monoclinic WO3 nanorods were obtained via removal of ammonium by annealing the synthesized (NH4)0.33·WO3 at 500 °C in air. Conformal WO3/BiVO4 heterojunction was also synthesized using PLD to extend its light harvest range as well as enhance the charge separation. The heterojunction was characterized to demonstrate efficient photocatalytic water splitting by core–shell arrays constructed based on high aspect ratio nanowires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A. Fujishima, K. Honda, Nature 238(5385), 37–38 (1972)

    Article  Google Scholar 

  2. T. Hisatomi, J. Kubota, K. Domen, Chem. Soc. Rev. 43(22), 7520–7535 (2014)

    Article  Google Scholar 

  3. Y. Park, K.J. McDonald, K.-S. Choi, Chem. Soc. Rev. 42(6), 2321–2337 (2013)

    Article  Google Scholar 

  4. P. Chatchai, Y. Murakami, S.-Y. Kishioka, A.Y. Nosaka, Y. Nosaka, Electrochim. Acta 54(3), 1147–1152 (2009)

    Article  Google Scholar 

  5. J. Su, L. Guo, N. Bao, C.A. Grimes, Nano Lett. 11(5), 1928–1933 (2011)

    Article  Google Scholar 

  6. J. Su, L. Vayssieres, ACS Energy Lett. 1(1), 121–135 (2016)

    Article  Google Scholar 

  7. G. Ai, H. Li, S. Liu, R. Mo, J. Zhong, Adv. Funct. Mater. 25(35), 5706–5713 (2015)

    Article  Google Scholar 

  8. K. Guo, Z. Liu, J. Han, Z. Liu, Y. Li, B. Wang, T. Cui, C. Zhou, Phys. Chem. Chem. Phys. 16(30), 16204–16213 (2014)

    Article  Google Scholar 

  9. K.V. Khot, S.S. Mali, R.M. Mane, P.S. Patil, C.K. Hong, J.H. Kim, J. Heo, P.N. Bhosale, J. Mater. Sci.: Mater. Electron. 26(9), 6897–6906 (2015)

    Google Scholar 

  10. J. Resasco, H. Zhang, N. Kornienko, N. Becknell, H. Lee, J. Guo, A.L. Briseno, P. Yang, ACS Central Sci. 2(2), 80–88 (2016)

    Article  Google Scholar 

  11. X. Chang, T. Wang, P. Zhang, J. Zhang, A. Li, J. Gong, J. Am. Chem. Soc. 137(26), 8356–8359 (2015)

    Article  Google Scholar 

  12. M. Da Silva, L. Scalvi, V.S.L. Neto, L. Dall’Antonia, J. Mater. Sci.: Mater. Electron. 26(10), 7705–7714 (2015)

    Google Scholar 

  13. P.M. Rao, L. Cai, C. Liu, I.S. Cho, C.H. Lee, J.M. Weisse, P. Yang, X. Zheng, Nano Lett. 14(2), 1099–1105 (2014)

    Article  Google Scholar 

  14. Y. Pihosh, I. Turkevych, K. Mawatari, T. Asai, T. Hisatomi, J. Uemura, M. Tosa, K. Shimamura, J. Kubota, K. Domen, Small 10(18), 3692–3699 (2014)

    Article  Google Scholar 

  15. X. Shi, I.Y. Choi, K. Zhang, J. Kwon, D.Y. Kim, J.K. Lee, S.H. Oh, J.K. Kim, J.H. Park, Nature Communications 5, 4775 (2014)

    Article  Google Scholar 

  16. Y. Pihosh, I. Turkevych, K. Mawatari, J. Uemura, Y. Kazoe, S. Kosar, K. Makita, T. Sugaya, T. Matsui, D. Fujita, Sci. Rep. 5, 11141 (2015)

    Article  Google Scholar 

  17. I. Grigioni, K.G. Stamplecoskie, E. Selli, P.V. Kamat, J. Phys. Chem. C 119(36), 20792–20800 (2015)

    Article  Google Scholar 

  18. S. Nishanthi, E. Subramanian, B. Sundarakannan, D.P. Padiyan, Sol. Energy Mater. Sol. Cells 132, 204–209 (2015)

    Article  Google Scholar 

  19. C. Wang, L. Wu, H. Wang, W. Zuo, Y. Li, J. Liu, Adv. Funct. Mater. 25(23), 3524–3533 (2015)

    Article  Google Scholar 

  20. M.G. Mali, H. Yoon, M.-W. Kim, M.T. Swihart, S.S. Al-Deyab, S.S. Yoon, Appl. Phys. Lett. 106(15), 151603 (2015)

    Article  Google Scholar 

  21. M. Sui, C. Han, Y. Wang, J. Li, X. Gu, J. Mater. Sci.: Mater. Electron. 27(5), 4290–4296 (2016)

    Google Scholar 

  22. C. Ng, Y.H. Ng, A. Iwase, R. Amal, ACS Appl. Mater. Interfaces 5(11), 5269–5275 (2013)

    Article  Google Scholar 

  23. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi (b) 15(2), 627–637 (1966)

    Article  Google Scholar 

  24. R. Bhattacharya, J. Electrochem. Soc. 130(10), 2040–2042 (1983)

    Article  Google Scholar 

  25. J. Su, X. Feng, J.D. Sloppy, L. Guo, C.A. Grimes, Nano Lett. 11(1), 203–208 (2010)

    Article  Google Scholar 

  26. Q. Mi, Y. Ping, Y. Li, B. Cao, B.S. Brunschwig, P.G. Khalifah, G.A. Galli, H.B. Gray, N.S. Lewis, J. Am. Chem. Soc. 134(44), 18318–18324 (2012)

    Article  Google Scholar 

  27. P.M. Rao, I.S. Cho, X. Zheng, Proc. Combust. Inst. 34(2), 2187–2195 (2013)

    Article  Google Scholar 

  28. C. Guo, S. Yin, Y. Huang, Q. Dong, T. Sato, Langmuir 27(19), 12172–12178 (2011)

    Article  Google Scholar 

  29. A. Michailovski, R. Kiebach, W. Bensch, J.-D. Grunwaldt, A. Baiker, S. Komarneni, G.R. Patzke, Chem. Mater. 19(2), 185–197 (2007)

    Article  Google Scholar 

  30. T. Gao, B.P. Jelle, J. Phys. Chem. C 117(26), 13753–13761 (2013)

    Article  Google Scholar 

  31. M. Saenger, T. Höing, B.W. Robertson, R. Billa, T. Hofmann, E. Schubert, M. Schubert, Phys. Rev. B 78(24), 245205 (2008)

    Article  Google Scholar 

  32. L. Ge, Mater. Chem. Phys. 107(2–3), 465–470 (2008)

    Article  Google Scholar 

  33. Y. Wei, J. Su, X. Wan, L. Guo, L. Vayssieres, Nano Res. 9(6), 1561–1569 (2016)

    Article  Google Scholar 

  34. M. Nenadovic, T. Rajh, O. Micic, A. Nozik, J. Phys. Chem. 88(24), 5827–5830 (1984)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 51236007, 51202186).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinzhan Su.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 269 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, J., Zhang, T. & Wang, L. Engineered WO3 nanorods for conformal growth of WO3/BiVO4 core–shell heterojunction towards efficient photoelectrochemical water oxidation. J Mater Sci: Mater Electron 28, 4481–4491 (2017). https://doi.org/10.1007/s10854-016-6082-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6082-0

Keywords

Navigation