Skip to main content

Advertisement

Log in

Morphology Controllable Fabrication of Tungsten Oxide for Enhanced Photocatalytic Performance

  • Original Article
  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Exploring the morphology-property relationship is an important role in addressing the mechanism of hydrogen production. In this work, WO3 photocatalysts with different morphology were prepared via a solvothermal method. Our first prepared porous WO3 with the exposed (100) crystal plane, the WO3 porous nano disk demonstrates a better photocatalytic activity, which is higher than the WO3 nanorod, WO3 nanoflower and WO3 nano block. Further characterizations indicate the WO3 porous nano disk exhibits high absorption capacity and active lattice structure. Meanwhile, with the introduction of non-noble metal Ni as the co-catalyst, the photocatalytic H2 evolution was enhanced. This work reveals the importance of regulating surface atomic configuration and catalytic active sites, opens a new avenue for the development of solar-driven water splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chen F, Huang H, Guo L, Zhang Y, Ma T (2019) The role of polarization in photocatalysis. Angew Chem Int Ed 58(30):10061–10073

    Article  CAS  Google Scholar 

  2. Cui W, Chen L, Li J, Zhou Y, Sun Y, Jiang G, Lee S, Dong F (2019) Ba-vacancy induces semiconductor-like photocatalysis on insulator BaSO4. Appl Catal B 253:293–299

    Article  CAS  Google Scholar 

  3. Meng A, Zhang L, Cheng B, Yu J (2019) Dual cocatalysts in TiO2 photocatalysis. Adv Mater 31(30):1807660

    Article  CAS  Google Scholar 

  4. Pan L, Ai M, Huang C, Yin L, Liu X, Zhang R, Wang S, Jiang Z, Zhang X, Zou J-J (2020) Manipulating spin polarization of titanium dioxide for efficient photocatalysis. Nat Commun 11(1):1–9

    Article  CAS  Google Scholar 

  5. Pan L, Sun S, Chen Y, Wang P, Wang J, Zhang X, Zou JJ, Wang ZL (2020) Advances in piezo-phototronic effect enhanced photocatalysis and photoelectrocatalysis. Adv Energy Mater 10(15):2000214

    Article  CAS  Google Scholar 

  6. Xiao X, Gao Y, Zhang L, Zhang J, Zhang Q, Li Q, Bao H, Zhou J, Miao S, Chen N (2020) A promoted charge separation/transfer system from Cu single atoms and C3N4 layers for efficient photocatalysis. Adv Mater 32(33):2003082

    Article  CAS  Google Scholar 

  7. Xu S, Guo L, Sun Q, Wang ZL (2019) Piezotronic effect enhanced plasmonic photocatalysis by AuNPs/BaTiO3 heterostructures. Adv Funct Mater 29(13):1808737

    Article  CAS  Google Scholar 

  8. Zhang Z, Liang Y, Huang H, Liu X, Li Q, Chen L, Xu D (2019) Stable and highly efficient photocatalysis with lead-free double-perovskite of Cs2AgBiBr6. Angew Chem Int Ed 58(22):7263–7267

    Article  CAS  Google Scholar 

  9. Guo X, Zhang G, Cui H, Wei N, Song X, Li J, Tian J (2017) Porous TiB2-TiC/TiO2 heterostructures: synthesis and enhanced photocatalytic properties from nanosheets to sweetened rolls. Appl Catal B 217:12–20

    Article  CAS  Google Scholar 

  10. Jiang D, Xue J, Wu L, Zhou W, Zhang Y, Li X (2017) Photocatalytic performance enhancement of CuO/Cu2O heterostructures for photodegradation of organic dyes: effects of CuO morphology. Appl Catal B 211:199–204

    Article  CAS  Google Scholar 

  11. Wang Z, Ye X, Chen L, Zhang L, Wang Q, Ma L, Hua N (2020) Photocatalytic properties of ZnO thin film with different morphologies from seed, array to grass. Micro Nano Lett 15(7):490–494

    Article  CAS  Google Scholar 

  12. Chen Y, Zeng D, Zhang K, Lu A, Wang L, Peng D-L (2014) Au–ZnO hybrid nanoflowers, nanomultipods and nanopyramids: one-pot reaction synthesis and photocatalytic properties. Nanoscale 6(2):874–881

    Article  CAS  PubMed  Google Scholar 

  13. Shemesh Y, Macdonald JE, Menagen G, Banin U (2011) Synthesis and photocatalytic properties of a family of CdS-PdX hybrid nanoparticles. Angew Chem 123(5):1217–1221

    Article  Google Scholar 

  14. Xu X, Fang X, Zhai T, Zeng H, Liu B, Hu X, Bando Y, Golberg D (2011) Tube-in-tube TiO2 nanotubes with porous walls: fabrication, formation mechanism, and photocatalytic properties. Small 7(4):445–449

    Article  CAS  PubMed  Google Scholar 

  15. Zhu J, Fan F, Chen R, An H, Feng Z, Li C (2015) Direct imaging of highly anisotropic photogenerated charge separations on different facets of a single BiVO4 photocatalyst. Angew Chem 127(31):9239–9242

    Article  Google Scholar 

  16. Dai Y, Cobley CM, Zeng J, Sun Y, Xia Y (2009) Synthesis of anatase TiO2 nanocrystals with exposed 001 facets. Nano Lett 9(6):2455–2459

    Article  CAS  PubMed  Google Scholar 

  17. Yang HG, Sun CH, Qiao SZ, Zou J, Liu G, Smith SC, Cheng HM, Lu GQ (2008) Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453(7195):638–641

    Article  CAS  PubMed  Google Scholar 

  18. Mohamed MM, Ahmed SA, Khairou KS (2014) Unprecedented high photocatalytic activity of nanocrystalline WO3/NiWO4 hetero-junction towards dye degradation: effect of template and synthesis conditions. Appl Catal B 150:63–73

    Article  CAS  Google Scholar 

  19. Roy SC, Varghese OK, Paulose M, Grimes CA (2010) Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 4(3):1259–1278

    Article  CAS  PubMed  Google Scholar 

  20. Hameed A, Gondal M, Yamani Z (2004) Effect of transition metal doping on photocatalytic activity of WO3 for water splitting under laser illumination: role of 3d-orbitals. Catal Commun 5(11):715–719

    Article  CAS  Google Scholar 

  21. Zhang J, Ma Y, Du Y, Jiang H, Zhou D, Dong S (2017) Carbon nanodots/WO3 nanorods Z-scheme composites: remarkably enhanced photocatalytic performance under broad spectrum. Appl Catal B 209:253–264

    Article  CAS  Google Scholar 

  22. Zeng X, Wang Z, Wang G, Gengenbach TR, McCarthy DT, Deletic A, Yu J, Zhang X (2017) Highly dispersed TiO2 nanocrystals and WO3 nanorods on reduced graphene oxide: Z-scheme photocatalysis system for accelerated photocatalytic water disinfection. Appl Catal B 218:163–173

    Article  CAS  Google Scholar 

  23. Kim S-J, Choi S-J, Jang J-S, Kim N-H, Hakim M, Tuller HL, Kim I-D (2016) Mesoporous WO3 nanofibers with protein-templated nanoscale catalysts for detection of trace biomarkers in exhaled breath. ACS Nano 10(6):5891–5899

    Article  CAS  PubMed  Google Scholar 

  24. Ofori FA, Sheikh FA, Appiah-Ntiamoah R, Yang X, Kim H (2015) A simple method of electrospun tungsten trioxide nanofibers with enhanced visible-light photocatalytic activity. Nano-micro Lett 7(3):291–297

    Article  CAS  Google Scholar 

  25. Wang X, Sun M, Murugananthan M, Zhang Y, Zhang L (2020) Electrochemically self-doped WO3/TiO2 nanotubes for photocatalytic degradation of volatile organic compounds. Appl Catal B 260:118205

    Article  CAS  Google Scholar 

  26. Xie YP, Liu G, Yin L, Cheng H-M (2012) Crystal facet-dependent photocatalytic oxidation and reduction reactivity of monoclinic WO3 for solar energy conversion. J Mater Chem 22(14):6746–6751

    Article  CAS  Google Scholar 

  27. Ding J, Zhang L, Liu Q, Dai W-L, Guan G (2017) Synergistic effects of electronic structure of WO3 nanorods with the dominant 001 exposed facets combined with silver size-dependent on the visible-light photocatalytic activity. Appl Catal B 203:335–342

    Article  CAS  Google Scholar 

  28. Lin R, Wan J, Xiong Y, Wu K, Cheong W-C, Zhou G, Wang D, Peng Q, Chen C, Li Y (2018) Quantitative study of charge carrier dynamics in well-defined WO3 nanowires and nanosheets: insight into the crystal facet effect in photocatalysis. J Am Chem Soc 140(29):9078–9082

    Article  CAS  PubMed  Google Scholar 

  29. Zhang J, Liu Z, Liu Z (2016) Novel WO3/Sb2S3 heterojunction photocatalyst based on WO3 of different morphologies for enhanced efficiency in photoelectrochemical water splitting. ACS Appl Mater Interfaces 8(15):9684–9691

    Article  CAS  PubMed  Google Scholar 

  30. Zhang N, Chen C, Mei Z, Liu X, Qu X, Li Y, Li S, Qi W, Zhang Y, Ye J (2016) Monoclinic tungsten oxide with 100 facet orientation and tuned electronic band structure for enhanced photocatalytic oxidations. ACS Appl Mater Interfaces 8(16):10367–10374

    Article  CAS  PubMed  Google Scholar 

  31. Boulova M, Lucazeau G (2002) Crystallite nanosize effect on the structural transitions of WO3 studied by Raman spectroscopy. J Solid State Chem 167(2):425–434

    Article  CAS  Google Scholar 

  32. Baek Y, Yong K (2007) Controlled growth and characterization of tungsten oxide nanowires using thermal evaporation of WO3 powder. Phys Chem C 111(3):1213–1218

    Article  CAS  Google Scholar 

  33. Biesinger MC, Payne BP, Grosvenor AP, Lau LW, Gerson AR, Smart RSC (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci 257(7):2717–2730

    Article  CAS  Google Scholar 

  34. Biesinger MC, Lau LW, Gerson AR, Smart RSC (2010) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl Surf Sci 257(3):887–898

    Article  CAS  Google Scholar 

  35. Li J, Liu Y, Zhu Z, Zhang G, Zou T, Zou Z, Zhang S, Zeng D, Xie C (2013) A full-sunlight-driven photocatalyst with super long-persistent energy storage ability. Sci Rep 3(1):1–6

    Google Scholar 

  36. Shinde PA, Lokhande AC, Patil AM, Lokhande CD (2019) Facile synthesis of self-assembled WO3 nanorods for high-performance electrochemical capacitor. J Alloys Compds 770:1130–1137

    Article  CAS  Google Scholar 

  37. Wei Z, Zhou Q, Lu Z, Xu L, Gui Y, Tang C (2019) Morphology controllable synthesis of hierarchical WO3 nanostructures and C2H2 sensing properties. Phys E 109:253–260

    Article  CAS  Google Scholar 

  38. Butler M (1977) Photoelectrolysis and physical properties of the semiconducting electrode WO2. J Appl Phys 48(5):1914–1920

    Article  CAS  Google Scholar 

  39. González-Borrero P, Sato F, Medina A, Baesso ML, Bento AC, Baldissera G, Persson C, Niklasson GA, Granqvist CG, da Ferreira Silva A (2010) Optical band-gap determination of nanostructured WO3 film. Appl Phys Lett 96(6):061909

    Article  CAS  Google Scholar 

  40. Rettie AJ, Klavetter KC, Lin J-F, Dolocan A, Celio H, Ishiekwene A, Bolton HL, Pearson KN, Hahn NT, Mullins CB (2014) Improved visible light harvesting of WO3 by incorporation of sulfur or iodine: a tale of two impurities. Chem Mater 26(4):1670–1677

    Article  CAS  Google Scholar 

  41. Huda MN, Yan Y, Wei S-H, Al-Jassim MM (2009) Exchange-induced negative-U charge order in N-doped WO3: a spin-Peierls-like system. Phys Rev B 80(11):115118

    Article  CAS  Google Scholar 

  42. Kim YI, Atherton SJ, Brigham ES, Mallouk TE (1993) Sensitized layered metal oxide semiconductor particles for photochemical hydrogen evolution from nonsacrificial electron donors. Phys Chem 97(45):11802–11810

    Article  CAS  Google Scholar 

  43. Chen P, Cui W, Wang H, Li J, Sun Y, Zhou Y, Dong F (2020) The importance of intermediates ring-opening in preventing photocatalyst deactivation during toluene decomposition. Appl Catal B 272:118977

    Article  CAS  Google Scholar 

  44. Wu T, Liu G, Zhao J, Hidaka H, Serpone N (1998) Photoassisted degradation of dye pollutants. V. Self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO2 dispersions. Phys Chem B 102(30):5845–5851

    Article  CAS  Google Scholar 

  45. Baiocchi C, Brussino MC, Pramauro E, Prevot AB, Palmisano L, Marcı̀ G (2002) Characterization of methyl orange and its photocatalytic degradation products by HPLC/UV–VIS diode array and atmospheric pressure ionization quadrupole ion trap mass spectrometry. Int J Mass Spectrom 214(2):247–256

    Article  CAS  Google Scholar 

  46. Chen Z, Peng Y, Chen J, Wang C, Yin H, Wang H, Li J (2020) Performance and mechanism of photocatalytic toluene degradation and catalyst regeneration by thermal/UV treatment. Environ Sci Technol 54(22):14465–14473

    Article  CAS  PubMed  Google Scholar 

  47. Liu B, Zhan Y, Xie R, Huang H, Li K, Zeng Y, Winijkul E (2019) Efficient photocatalytic oxidation of gaseous toluene in a bubbling reactor of water. Chemosphere 233:754–761

    Article  CAS  PubMed  Google Scholar 

  48. Zheng Y, Chen C, Zhan Y, Lin X, Zheng Q, Wei K, Zhu J (2008) Photocatalytic activity of Ag/ZnO heterostructure nanocatalyst: correlation between structure and property. Phy Chem C 112(29):10773–10777

    Article  CAS  Google Scholar 

  49. Zhang Y, Zhang D, Xu X, Zhang B (2018) Morphology control and photocatalytic characterization of WO3 nanofiber bundles. Chin Chem Let 29(9):1350–1354

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors of this work gratefully appreciate the financial support provided by National Natural Science Foundation of China (Nos. 41573096, 21707064), Program for Changjiang Scholars and Innovative Research Team in University (No. IRT_17R71), Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (QD2019005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenqian Chen or Minghong Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1997 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, L., Feng, Y., Chen, W. et al. Morphology Controllable Fabrication of Tungsten Oxide for Enhanced Photocatalytic Performance. Catal Surv Asia 25, 334–345 (2021). https://doi.org/10.1007/s10563-021-09336-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-021-09336-6

Keywords

Navigation