Skip to main content
Log in

The role of sodium compound fluxes used to synthesize Gd2O2S:Tb3+ by sulfide fusion method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Different sodium compound fluxes were chosen to synthesize Gd2O2S:Tb3+ phosphor by the sulfide fusion method. X-ray diffraction, fluorescent spectrophotometer, field emission scanning electron microscope (FE-SEM), thermal gravimetric analyses and differential scanning calorimetry were used to analyze the influences of sodium compound fluxes on the phase formation, luminescence properties, morphology and reaction process of Gd2O2S:Tb3+. It was shown that the existence of Na2S2O3 and Na2Sx (x = 2~6) ensured the formation of Gd2O2S phase and improved the Tb3+ doping into substrate materials. The particle growth of phosphors was attributed to the effective flux agent of Na2S, and larger particles could be formed by adding Na2S. The grown particles presented a hexagonal shape, and larger particles were constructed by packing smaller ones along the c-axis direction. Furthermore, Gd2O2S:Tb3+ exhibited 544 nm emission peak due to the 5D4 → 7F5 transition of Tb3+ when excited at 254 nm, and the luminescence intensity of it with the addition of Na2S2O3 was stronger than that prepared from other sodium compound fluxes including Na2Sx, Na2CO3, Na2SO3 and Na2S.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. F. Wang, X.M. Chen, D.C. Liu, B. Yang, Y.N. Dai, J. Mol. Struct. 1020, 153 (2012)

    Article  Google Scholar 

  2. Y.H. Song, H.P. You, Y.J. Huang, M. Yang, Y.H. Zheng, L.H. Zhang, N. Guo, Inorg. Chem. 49, 11499 (2010)

    Article  Google Scholar 

  3. X. Cao, X.L. Chen, F. Kang, Y.H. Zhan, X. Cao, J. Wang, J.M. Liang, J. Tian, ACS. Appl. Mater. Inter 7, 11775 (2015)

    Article  Google Scholar 

  4. J.X. Ma, M. Fang, N.T. Lau, J. Catal. 158, 251 (1996)

    Article  Google Scholar 

  5. R.N. Bhargava, V. Chhabra, B. Kulkarni, J.V. Veliadis, Phys. Stat. Sol (b) 210, 621 (1998)

    Article  Google Scholar 

  6. X.G. Huang, J. Zhang, W. Wang, T.Y. Sang, B. Song, H.L. Zhu, W.F. Rao, C.P. Wong, J. Magn. Magn. Mater. 405, 36 (2016)

    Article  Google Scholar 

  7. X.G. Huang, J. Zhang, W.F. Rao, T.Y. Sang, C.P. Wong, J. Alloy. Compd. 662, 409 (2016)

    Article  Google Scholar 

  8. D.L. Dai, H.W. Song, M.Y. Wang, X. Bai, B. Dong, R.F. Qin, X.S. Qu, H. Zhang, J. Phys. Chem. C 112, 19399 (2008)

    Article  Google Scholar 

  9. J. Liu, H.D. Luo, P.J. Liu, L.X. Han, X. Zheng, B. Xu, X.B. Yu, Dalton. T 41, 13984 (2012)

    Article  Google Scholar 

  10. M. Kottaisamy, R. Jagannathan, Ravi P. Rao, M. Avudaithai, L.K. Srinivasan, V. Sundaram, J. Electrochem. Soc. 142, 3205 (1995)

    Article  Google Scholar 

  11. C.H. Chiang, T.H. Liu, H.Y. Lin, H.Y. Kuo, S.Y. Chu, J. Disp. Technol 11, 466 (2015)

    Article  Google Scholar 

  12. M. Kubus, H.J. Meyer, Z. Anorg, Allg. Chem 639, 669 (2013)

    Article  Google Scholar 

  13. T.P. Tang, Ceram. Int. 33, 1251 (2007)

    Article  Google Scholar 

  14. Y.J. Ding, W.M. Yang, Q.T. Zhang, L.X. Wang, J. Mater. Sci-Mater. El 26, 1982 (2015)

    Article  Google Scholar 

  15. F. Duault, M. Junker, P. Grosseau, B. Guilhot, P. Iacconi, B. Moine, Powder Technol. 154, 132 (2005)

    Article  Google Scholar 

  16. X.X. Luo, W.H. Cao, Y. Tian, Opt. Mater. 30, 351 (2007)

    Article  Google Scholar 

  17. B.F. Lei, Y.L. Liu, J.W. Zhang, J.X. Meng, S.Q. Man, S.Z. Tan, J. Alloy. Compd. 495, 247 (2010)

    Article  Google Scholar 

  18. X. Yan, G.R. Fern, R. Withnall, J. Silver, Nanoscale 5, 8640 (2013)

    Article  Google Scholar 

  19. E.J. Popovici, L. Muresan, A. Hristea-Simoc, E. Indrea, M. Vasilescu, M. Nazarov, D.Y. Jeon, Opt. Mater. 27, 559 (2004)

    Article  Google Scholar 

  20. I. Hyppänen, J. Hölsä, J. Kankare, M. Lastusaari, L. Pihlgren, Opt. Mater. 31, 1787 (2009)

    Article  Google Scholar 

  21. M. Pham-Thi, A. Morell, J. Electrochem. Soc. 138, 1100 (1991)

    Article  Google Scholar 

  22. L. Ozawa, M. Koike, M. Itoh, Mater. Chem. Phys. 93, 420 (2005)

    Article  Google Scholar 

  23. Q.Y. Wang, Y. Dong, Q.Y. Shao, X.M. Teng, J.Q. Jiang, Mater. Design 95, 618 (2016)

    Article  Google Scholar 

  24. S.Z. Yao, Y.B. Zhu, W.X. Hu, L.H. Nie, Handbook of chemical reactions of elements, (Hunan Education Publishing House, Hunan, 1998), p. 505

  25. O. Kanehisa, T. Kano, H. Yamamoto, J. Electrochem. Soc. 132, 2023 (1985)

    Article  Google Scholar 

  26. J.J. Liu, Y.P. Zhou, S.L. Li, Physical Chemistry, (Higher Education Press, Beijing, 2009), p. 201

  27. H.X. Mai, Y.W. Zhang, R. Si, Z.G. Yan, L.D. Sun, L.P. You, C.H. Yan, J. Am. Chem. Soc. 128, 6426 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The project is supported by Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and National Natural Science Foundation of China (51202111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qitu Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Zhang, Z., Wang, L. et al. The role of sodium compound fluxes used to synthesize Gd2O2S:Tb3+ by sulfide fusion method. J Mater Sci: Mater Electron 28, 2723–2730 (2017). https://doi.org/10.1007/s10854-016-5851-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5851-0

Keywords

Navigation