Skip to main content
Log in

Effect of activated carbon on electrochemical and photocatalytic performance of hydrothermally synthesized zinc stannate nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Zinc stannate (Zn2SnO4) nanoparticles were successfully loaded with activated carbon through a facile hydrothermal method using potassium hydroxide as a mineralizer. Ratio of zinc stannate and activated carbon was optimized by XRD analysis. Further morphological, optical and electrochemical properties were analyzed by field emission scanning electron microscope, high resolution transmission electron microscope, UV–Vis spectroscopy and cyclic voltammetry analysis. Nitrogen adsorption–desorption isotherm study showed a high specific surface area of 142 m2 g−1 for Zn2SnO4 loaded activated carbon nanoparticles. Electrochemical studies indicate that loading with activated carbon enhances the electrochemical performance of Zn2SnO4 nanoparticles significantly. Finally, evaluation of photocatalytic properties by degrading methylene blue and methyl green dye in the presence of Zn2SnO4 nanoparticles and Zn2SnO4 nanoparticles loaded activated carbon as photocatalysts has been reported. Results divulge that activated carbon boosts the degradation rate of the photocatalyst. Hence, Zn2SnO4 nanoparticles loaded activated carbon can be a promising degrader for organic dyes as well as a potential material for super capacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B. Tan, E. Toman, Y. Li, Y. Wu, J. Am. Chem. Soc. 129, 4162 (2007)

    Article  Google Scholar 

  2. L.S. Oh, D.H. Kim, J.A. Lee, S.S. Shin, J. Lee, I.J. Park, M.J. Ko, N. Park, S.G. Pyo, K.S. Hong, J.Y. Kim, J. Phys. Chem. C 116, 22991 (2014)

    Article  Google Scholar 

  3. C. Chen, G. Li, J. Li, Y. Liu, Ceram. Int. 41, 1857 (2015)

    Article  Google Scholar 

  4. W. Wang, H. Chai, X. Wang, X. Hu, X. Li, Appl. Surf. Sci. 341, 43 (2015)

    Article  Google Scholar 

  5. A. Bera, A.D. Sheikh, M.A. Haque, R. Bose, E. Alarousu, O.F. Mohammed, T. Wu, ACS Appl. Mater. Interfaces 7, 28404 (2015)

    Article  Google Scholar 

  6. L. Wang, T. Zhou, R. Zhang, Z. Lou, J. Deng, T. Zhang, Sens. Actuators B: Chem. 227, 448 (2016)

    Article  Google Scholar 

  7. C. Yan, J. Yang, Q. Xie, Z. Lu, B. Liu, C. Xie, Y. Guan, Mater. Lett. 138, 120 (2015)

    Article  Google Scholar 

  8. Y. Wang, G. Li, J. Cao, Micro Nano Lett. IET 10, 443 (2015)

    Article  Google Scholar 

  9. L. Wang, X. Zhang, X. Liao, W. Yang, Nanotechnology 16, 2928 (2005)

    Article  Google Scholar 

  10. J.X. Wang, S.S. Xie, H.J. Yuan, X.Q. Yan, D.F. Liu, Y. Gao, Z.P. Zhou, L. Song, L.F. Liu, X.W. Zhao, X.Y. Dou, W.Y. Zhou, G. Wang, Solid State Commun. 131, 435 (2004)

    Article  Google Scholar 

  11. A. Kurz, K. Brakecha, J. Puetz, M.A. Aegerter, Thin Solid Films 502, 212 (2006)

    Article  Google Scholar 

  12. G. Fu, H. Chen, Z. Chen, J. Zhang, H. Kohler, Sens. Acutators B: Chem. 81, 308 (2002)

    Article  Google Scholar 

  13. M. Zhang, T. An, X. Hu, C. Wang, G. Sheng, J. Fu, Appl. Catal. A: Gen. 260, 215 (2004)

    Article  Google Scholar 

  14. T. Tangcharoen, C. Kongmark, W. Pecharapa, J. Mol. Struct. 1102, 95 (2015)

    Article  Google Scholar 

  15. W. Mekprasart, P. Nakhanivej, T. Tangcharoen, W. Pecharapa, Integr. Ferroelectr. 165, 138 (2015)

    Article  Google Scholar 

  16. H. Shan, Y. Zhao, X. Li, D. Xiong, L. Dong, B. Yan, X. Sun, J. Appl. Electrochem. 46, 851 (2016)

    Article  Google Scholar 

  17. S. Dinesh, S. Barathan, V.K. Premkumar, G. Sivakumar, N. Anandan. J. Mater. Sci.: Mater. Electron. 1–8 (2016). doi:10.1007/s10854-016-5027-y

  18. M.B. Ali, F. Barka-Bouaifel, H. Elhouichet, B. Sieber, A. Addad, L. Boussekey, M. Férid, R. Boukherroub, J. Colloid Interface Sci. 457, 360 (2015)

    Article  Google Scholar 

  19. S. Baruah, J. Dutta, Sci. Technol. Adv. Mater. 12, 013004 (2011)

    Article  Google Scholar 

  20. P. Muthirulan, M. Meenakshisundararam, N. Kannan, J. Adv. Res. 4, 479 (2013)

    Article  Google Scholar 

  21. A. Omri, S.D. Lambert, J. Geens, F. Bennour, M. Benzina, J. Mater. Sci. Technol. 30, 894 (2014)

    Article  Google Scholar 

  22. P.S. Kumar, M. Selvakumar, S.G. Babu, S. Karuthapandian, S. Chattopadhyay, Mater. Lett. 151, 45 (2015)

    Article  Google Scholar 

  23. E. Rokhsat, O. Akhavan, Appl. Surf. Sci. 371, 590 (2016)

    Article  Google Scholar 

  24. A.D. Liyanage, S.D. Perera, K. Tan, Y. Chabal, K.J. Balkus Jr., ACS Catal. 4, 577 (2014)

    Article  Google Scholar 

  25. C. Liu, R. Röder, L. Zhang, Z. Ren, H. Chen, Z. Zhang, P.X. Gao, J. Mater. Chem. A 2, 4157 (2014)

    Article  Google Scholar 

  26. Y. Qin, J. Xiong, W. Zhang, L. Liu, Y. Cui, H. Gu, J. Mater. Chem. 50, 5865 (2015)

    Google Scholar 

  27. A.H. El-Sheikh, A.P. Newman, H. Al-Daffaee, S. Phull, N. Cresswell, S. York, Surf. Coat. Technol. 187, 284 (2004)

    Article  Google Scholar 

  28. C. Andriantsiferana, E.F. Mohamed, H. Delmas, Environ. Technol. 35, 355 (2014)

    Article  Google Scholar 

  29. M.G. Naseri, E.B. Saion, H.A. Ahangar, M. Hashim, A.H. Shaari, Powder Technol. 212, 80 (2011)

    Article  Google Scholar 

  30. V. Ramasamy, G. Vijayalakshmi, Superlattices Microstruct. 85, 510 (2015)

    Article  Google Scholar 

  31. J. Wang, J.L. Liu, D.L. Chao, J.X. Yan, J.Y. Lin, Z.X. Shen, Adv. Mater. 26, 7162 (2014)

    Article  Google Scholar 

  32. B.Y. Wang, H.Y. Wang, Y.L. Ma, X.H. Zhao, W. Qi, Q.C. Jiang, J. Power Sources 281, 341 (2015)

    Article  Google Scholar 

  33. V. Sepelak, S.M. Becker, I. Bergmann, S. Indris, M. Scheuermann, A. Feldhoff, C. Kubel, M. Bruns, N. Sturzl, A.S. Ulrich, M. Ghafari, H. Hahn, C.P. Grey, K.D. Becker, P. Heitjans, J. Mater. Chem. 22, 3117 (2012)

    Article  Google Scholar 

  34. M.B. Ali, F. Barka-Bouaifel, H. Elhouichet, B. Sieber, A. Addad, L. Boussekey, R. Boukherroub, J. Colloid Interface Sci. 457, 360 (2015)

    Article  Google Scholar 

  35. J.X. Wang, S.S. Xie, H.J. Yuan, X.Q. Yan, D.F. Liu, Y. Gao, Z.P. Zhou, L. Song, L.F. Liu, X.W. Zhao, X.Y. Dou, W.Y. Zhou, G. Wang, Solid State Commun. 131, 435 (2004)

    Article  Google Scholar 

  36. J.X. Wang, S.S. Xie, Y. Gao, X.Q. Yan, D.F. Liu, H.J. Yuan, G. Wang, J. Cryst. Growth 267, 177 (2004)

    Article  Google Scholar 

  37. L. Wang, X. Zhang, X. Liao, W. Yang, Nanotechnology 16, 2928 (2005)

    Article  Google Scholar 

  38. M.N. Khan, M. Al-Hinai, A. Al-Hinai, J. Dutta, Ceram. Int. 40, 8743 (2014)

    Article  Google Scholar 

  39. M. Jayalakshmi, K. Balasubramanian, Int. J. Electrochem. Sci. 3, 1196 (2008)

    Google Scholar 

  40. R. Ramachandran, S. Felix, G.M. Joshi, B.P. Raghupathy, S.K. Jeong, A.N. Grace, Mater. Res. Bull. 48, 3834 (2013)

    Article  Google Scholar 

  41. Q.I. Rahman, M. Ahmad, S.K. Misra, M.B. Lohani, Superlattices Microstruct. 64, 495 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Barathan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinesh, S., Thirugnanam, N., Anandan, M. et al. Effect of activated carbon on electrochemical and photocatalytic performance of hydrothermally synthesized zinc stannate nanoparticles. J Mater Sci: Mater Electron 27, 12786–12795 (2016). https://doi.org/10.1007/s10854-016-5411-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5411-7

Keywords

Navigation