Skip to main content
Log in

Thermoelectric properties of rare earth containing type-I Clathrate compound, Dy8Al16Si30

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Type-I clathrates are of importance for thermoelectric applications as the cage in these structures can be filled with a anharmonic oscillator that decreases the thermal conductivity. Among the various type-I clathrates, Si-based alloys are of relevance for high temperature application and most importantly because they are made of earth abundant elements. In the present work, Dysprosium (Dy) has been chosen as the anharmonic cage element because of its large mass and small size compared to divalent alkali metal ions. Structural characterization of Dy8Al16Si30 alloy performed using a combination of x-ray diffraction and Rietveld refinement indicates presence of type-I clathrate phase along with DyAl2Si2 and DySi2 phases even after prolonged annealing. The Seebeck coefficient is found to be positive and increases with increasing temperature both before and after annealing. The resistivity is found to be low, 2–10 μΩm and increases with increasing temperature, a highly doped degenerate semiconducting behavior. The thermal conductivity with dominant phonon contribution has been found to decrease on annealing from an unusually high value of ~100–50 Wm−1K−1. The electronic contribution to thermal conductivity is found to be low by an order of magnitude indicating that the cage structure plays a dominant role in phonon transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K. Behnia, Science 351, 124 (2016)

    Article  Google Scholar 

  2. L. Krishna, C.A. Koh, MRS Energy Sustain. Rev. J. (2015). doi:10.1557/mre.2015.9

    Google Scholar 

  3. M. Tomkiewicz, MRS Energy Sustain Rev. J. (2015). doi:10.1557/mre.2015.14

    Google Scholar 

  4. M. Beekman, D.T. Morelli, G.S. Nolas, Nature Mater. 14, 1182 (2015)

    Article  Google Scholar 

  5. G.A. Slack, in New materials and perfromance limits for thermoelectric cooling and thermoelectric generation, ed. by D.M. Rowe. CRC Handbook of Thermoelectrics (CRC Press, Taylor & Francis Group, Boca Raton, FL, 1995), p. 407

    Google Scholar 

  6. D.T. Morelli, G.P. Meisner, J. Appl. Phys. 77, 3777 (1995)

    Article  Google Scholar 

  7. G.S. Nolas (ed.), Physics and Chemistry of Inorganic Clathrates (Springer, Heidelberg, 2014)

    Google Scholar 

  8. B.X. Shi, J. Yang, S. Bai, J. Yang, H. Wang, M. Chi, J.R. Salvador, W. Zhang, L. Chen, W. Wong-Ng, Adv. Funct. Mater. 20, 755 (2010)

    Article  Google Scholar 

  9. M. He, F. Qiua, Z. Lin, Energy Environ. Sci. 6, 1352 (2013)

    Article  Google Scholar 

  10. M. Christensen, S. Johnsen, B.B. Iversen, Dalton Trans. 39, 978 (2010)

    Article  Google Scholar 

  11. B.B. Iversen, A.E.C. Palmqvist, D.E. Cox, G.S. Nolas, G.D. Stucky, N.P. Blake, H. Metiu, J. Solid State Chem. 149, 455 (2000)

    Article  Google Scholar 

  12. H. Anno, M. Hokazono, R. Shirataki, Y. Nagami, J. Mater. Sci. 48, 2847 (2013)

    Article  Google Scholar 

  13. T. Takabatake, K. Suekuni, T. Nakayama, E. Kaneshita, Rev. Mod. Phys. 86, 669 (2014)

    Article  Google Scholar 

  14. A. Saramat et al., J. Appl. Phys. 99, 023708 (2006)

    Article  Google Scholar 

  15. A. Bentien et al., Phys. Rev. B 69, 045107 (2004)

    Article  Google Scholar 

  16. S. Paschen, W. Carrillo-Cabrera, A. Bentien, V.H. Tran, M. Baenitz, Yu. Grin, F. Steglich, Phys. Rev. B. 64, 214404 (2001)

    Article  Google Scholar 

  17. X. Tang, P. Li, S. Deng, Q. Zhang, J. Appl. Phys. 104, 013706 (2008)

    Article  Google Scholar 

  18. A. Prokofiev, A. Sidorenko, K. Hradil, M. Ikeda, R. Svagera, M. Waas, H. Winkler, K. Neumaier, S. Paschen, Nat. Mater. 12, 1096 (2013)

    Article  Google Scholar 

  19. A. Bentien, E. Nishibori, S. Paschen, B.B. Iversen, Phys. Rev. B 71, 144107 (2005)

    Article  Google Scholar 

  20. M. Christensen, N. Lock, J. Overgaard, B.B. Iversen, J. Am. Chem. Soc. 128, 15657 (2006)

    Article  Google Scholar 

  21. J.H. Roudebush, N. Tsujii, A. Hurtando, H. Hope, Y. Grin, S.M. Kauzlarich, Inorg. Chem. 51, 4161 (2012)

    Article  Google Scholar 

  22. H. Anno, M. Hokazono, R. Shiratakai, Y. Nagami, J. Electron. Mater. 42, 2326 (2013)

    Article  Google Scholar 

  23. N. Tsujii, J.H. Roudebush, A. Zevalkink, C.A. Cox-Uvarov, G.J. Snyder, S.M. Kauzlarich, J. Solid State Chem. 184, 1293 (2011)

    Article  Google Scholar 

  24. C.L. Condron, S.M. Kauzlarich, T. Ikeda, G.J. Snyder, F. Haarmann, P. Jeglic, Inorg. Chem. 47, 8204 (2008)

    Article  Google Scholar 

  25. T. Kawaguchi, K. Tanigaki, M. Yasukawa, Phys. Rev. Lett. 85, 3189 (2000)

    Article  Google Scholar 

  26. J.L. Murray, A.J. McAlister, Bull. Alloy Phase Diagr. 5, 74 (1984)

    Article  Google Scholar 

  27. H. Schafer, Annu. Rev. Mater. Sci. 15, 1 (1985)

    Article  Google Scholar 

  28. G.S. Kumar, G. Prasad, R.O. Pohl, J. Mater. Sci. 28, 4261 (1993)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Nanomission, Department of Science and Technology, Government of India for financial assistance to procure the facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish Vitta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajput, K., Vitta, S. Thermoelectric properties of rare earth containing type-I Clathrate compound, Dy8Al16Si30 . J Mater Sci: Mater Electron 27, 10303–10308 (2016). https://doi.org/10.1007/s10854-016-5113-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5113-1

Keywords

Navigation