Skip to main content
Log in

Temperature sensing based on up-conversion luminescence of (1 − x)Na0.5Bi2.5Ta2O9 + xNa0.5Er0.5TiO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Aurivillius oxide Na0.5Bi2.5Ta2O9 inserted by Na0.5Er0.5TiO3 ((1  x)NBTa-xNET, x = 0, 0.05, 0.1, 0.2, 0.3, 0.5) was synthesized by the conventional solid-state method. The ceramic samples with moderate addition of Na0.5Er0.5TiO3 showed strong green and red emissions under 980 nm radiation excitation at room temperature. In the up-conversion luminous spectra, the sample of x = 0.3 had the strongest green emission. Study on how up-conversion luminous intensity varying with excitation power indicated that the green and red up-conversion luminescence (UCL) were both two-photon absorption processes. The dependence of luminescence intensity on temperature was measured in the temperature range of 83–583 K. It was observed that the fluorescence intensity ratio R(I533.6/I546.8) changed with temperature. The maximum temperature sensitivity was found to be about 20.2 × 10−4 K−1 (425 K). It is believed that Er3+ doped in Na0.5Bi2.5Ta2O9 by the form of perovskite-structured Na0.5Er0.5TiO3 is an effective method to improve the UCL property of this ceramic, which has potential application in optical temperature sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Song, C.W. Lu, Y.N. Ding, T. Luan, G.Y. Wang, J.M. Lu, L.Q. Guo, Spectrochim. Acta A Mol. Biomol. Spectrosc. 155, 81–87 (2016)

    Article  Google Scholar 

  2. X.N. Chai, J. Li, X.S. Wang, H.F. Zhao, Y.X. Li, X. Yao, Mater. Sci. Eng., B 201, 23–28 (2015)

    Article  Google Scholar 

  3. A. Jha, S.X. Shen, L.H. Huang, B. Richards, J. Lousteau, J. Mater. Sci-Mater. El. 18, 315–320 (2007)

    Article  Google Scholar 

  4. F. Moglia, S. Müller, F. Reichert, P.W. Metz, T. Calmano, C. Kränkel, E. Heumann, G. Huber, Opt. Mater. 42, 167–173 (2015)

    Article  Google Scholar 

  5. A. Langar, C. Bouzidi, H. Elhouichet, M. Férid, J. Lumin. 148, 249–255 (2014)

    Article  Google Scholar 

  6. S.J. Zeng, H.B. Wang, W. Liu, Z.G. Yi, L. Rao, H.R. Liu, J.H. Hao, Biomaterials 35, 2934–2941 (2014)

    Article  Google Scholar 

  7. J.M. Meruga, W.M. Cross, P.S. May, Q.A. Luu, G.A. Crawford, J.J. Kellar, Nanotechnology 23, 395201 (2012)

    Article  Google Scholar 

  8. B. Aurivillius, Ark. Kemi 1, 499–512 (1949)

    Google Scholar 

  9. T. Wei, C.Z. Zhao, Q.J. Zhou, Z.P. Li, Y.Q. Wang, L.S. Zhang, Opt. Mater. 36, 1209–1212 (2014)

    Article  Google Scholar 

  10. H. Zou, X.S. Wang, Y.F. Hu, X.Q. Zhu, Y.X. Sui, D.H. Shen, Z.T. Song, J. Mater. Sci-Mater. El. 26, 6502–6505 (2015)

  11. H.W. Zheng, S.J. Liu, G.S. Yim, W.C. Wang, C.L. Diao, Y.Z. Gu, W.F. Zhang, J. Sol-Gel. Sci. Technol. 59, 290–296 (2011)

    Article  Google Scholar 

  12. X.W. Hui, D.F. Peng, H. Zou, J. Li, Q.F. Cao, Y.X. Li, X.S. Wang, X. Yao, Ceram. Int. 40, 12477–12483 (2014)

    Article  Google Scholar 

  13. S. Kumar, K.B.R. Varma, Mater. Sci. Eng., B 172, 177–182 (2010)

    Article  Google Scholar 

  14. C.M. Wang, J.F. Wang, Z.G. Gai, M.L. Zhao, L. Zhao, J.X. Xu, N. Yin, C.J. Zhang, S.Q. Sun, G.Z. Zang, R.Q. Chu, Z.J. Xu, Mater. Chem. Phys. 110, 402–405 (2008)

    Article  Google Scholar 

  15. D.F. Peng, X.S. Wang, C.N. Xu, X. Yao, J. Lin, T.T. Sun, J. Am. Ceram. Soc. 96, 184–190 (2013)

    Article  Google Scholar 

  16. D.F. Peng, H. Zou, C.N. Xu, X.S. Wang, X. Yao, J. Alloys Comp. 552, 463–468 (2013)

    Article  Google Scholar 

  17. F. Qiang, J.H. He, J. Zhu, X.B. Chen, J. Solid State Chem. 179, 1768–1774 (2006)

    Article  Google Scholar 

  18. R. Aoyagi, H. Takeda, S. Okamura, T. Shiosaki, Mater. Sci. Eng., B 116, 156–160 (2005)

    Article  Google Scholar 

  19. S. Borg, G. Svensson, J. Solid State Chem. 157, 160–165 (2001)

    Article  Google Scholar 

  20. D.F. Peng, H.Q. Sun, X.S. Wang, J.C. Zhang, M.M. Tang, X. Yao, J. Alloys Comp. 511, 159–162 (2012)

    Article  Google Scholar 

  21. T. Trupke, M.A. Green, P. Würfel, J. Appl. Phys. 92, 1668–1674 (2002)

    Article  Google Scholar 

  22. H.Q. Wang, M. Batentschuk, A. Osvet, A. Osvet, L. Pinna, C.J. Brabec, Adv. Mater. 23, 2675–2680 (2011)

    Article  Google Scholar 

  23. H. Zou, X.S. Wang, Y.F. Hu, X.Q. Zhu, Y.X. Sui, Z.T. Song, AIP. Adv. 4, 127157 (2014)

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51572195).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xusheng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, F., Li, J., Chai, X. et al. Temperature sensing based on up-conversion luminescence of (1 − x)Na0.5Bi2.5Ta2O9 + xNa0.5Er0.5TiO3 ceramics. J Mater Sci: Mater Electron 27, 7994–8000 (2016). https://doi.org/10.1007/s10854-016-4794-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4794-9

Keywords

Navigation