Skip to main content
Log in

Effect of Ga-substitution for Fe sites of delafossite CuFe1−x Ga x O2 (x = 0.0, 0.1, 0.3, 0.5) on thermal conductivity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work aimed to study the effect of the Ga3+-substitution of Fe3+ sites in CuFeO2 delafossite on its thermal conductivity. CuFe1−xGaxO2 (x = 0, 0.1, 0.3, and 0.5) samples were synthesized and their phase structure and ionic composition were characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). The thermal conductivity of the samples was measured at a high temperature range of 298–573 K. The XRD results confirmed that the samples were pure phase delafossite with hexagonal structure space group: \( R\bar{3}{\text{m}} \) while the EDX results showed composition atomic percent of Ga 100 % of x = 0.1, 93 % of x = 0.3 and 90 % of x = 0.5 and the XPS results revealed Cu1+ and Cu2+, Fe2+ and Fe3+, and Ga3+ ion states in the structure. The Ga-substitution decreased the thermal conductivity of the samples below that of non-doped CuFeO2. The high substitution sample (x = 0.5) exhibited the lowest thermal conductivity, 2.5 W/mK at 573 K. Ga substitution into Fe sites affected the lattice thermal conductivity partly through phonon scattering processes arising from mass difference and lattice strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.D. Shannon, D.B. Rogers, C.T. Prewitt, Inorg. Chem. 10(4), 713–718 (1971)

    Article  Google Scholar 

  2. C.T. Prewitt, R.D. Shonnon, D.B. Rogers, Inorg. Chem. 10(4), 719–723 (1971)

    Article  Google Scholar 

  3. M. Grundmann, The Physics of Semiconductor, 2nd edn. (Springer, Berlin, 2010), p. 54

    Book  Google Scholar 

  4. R.B. Gall, N. Ashmore, M.A. Marquardt, X. Tan, D.P. Cann, J. Alloys Compd. 391, 261–266 (2005)

    Article  Google Scholar 

  5. C. Ruttanapun, A. Wichainchai, W. Prachamon, A. Yangthaisong, A. Charoemphakdee, T. Seetawan, J. Alloys Compd. 509, 4588–4594 (2011)

    Article  Google Scholar 

  6. T. Nozaki, K. Hayashi, T. Kajitani, J. Electron. Mater. 39(9), 1798–1802 (2010)

    Article  Google Scholar 

  7. Joint Committee on Powder Diffraction Standards (JCPDS), Card No. 39-0246

  8. M. Laianne, A. Barnabe, F. Mathieu, Ph Tailhades, Inorg. Chem. 48, 6065–6071 (2009)

    Article  Google Scholar 

  9. Joint Committee on Powder Diffraction Standards (JCPDS), Card No. 77-2495

  10. B.D. Cullity, Element of X-Ray Diffraction (Addison-Wesley, Reading, 1978). (Ch 9 and Appendix)

    Google Scholar 

  11. M.A. Wahab, Solid State Physics Structure and Properties of Material, 2nd edn. (Alpha Science, Oxford, 2005), pp. 300–322

    Google Scholar 

  12. T. Nozaki, K. Hayashi, T. Kajitani, J. Electron. Mater. 38(79), 1282–1286 (2009)

    Article  Google Scholar 

  13. T. Fujii, F.M.F. de Groot, G.A. Sawatzky, Phys. Rev. B 59, 3195–3202 (1999)

    Article  Google Scholar 

  14. A.P. Grosvenor, B.A. Kobe, M.C. Biesinger, N.S. McIntyre, Surf. Interface Anal. 36, 1564–1574 (2004)

    Article  Google Scholar 

  15. J.P. Tobin, W. Hirschwald, J. Cunningham, Appl. Surf. Sci. 16, 441–452 (1983)

    Article  Google Scholar 

  16. S.W. Gaarenstroom, N. Winograd, J. Chem. Phys. 67, 3500 (1977)

    Article  Google Scholar 

  17. G. Cabello, A. Araneda, L. Lillo, C. Caro, C. Venegas, M. Tejos, B. Chornik. Solid State Sci. 27, 24–29 (2014)

    Article  Google Scholar 

  18. T. Pangviwate, IMEKO TC3 & TC5 & TC22 International Conference, Nov 22–25, Chonburi (2010)

  19. J. Francl, W.D. Kingery, J. Am. Ceram. Soc. 37, 99 (1954)

    Article  Google Scholar 

  20. C.G. Sivan Pillai, A.M. George, J. Phys. Chem. Solids 55, 479 (1994)

    Article  Google Scholar 

  21. C. Wood, Rep. Prog. Phys. 51, 459–539 (1988)

    Article  Google Scholar 

  22. A.F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling (Infosearch Limited, London, 1957)

    Google Scholar 

  23. V. Ambegaoker, Phys. Rev. 114, 488 (1959)

    Article  Google Scholar 

  24. G.A. Slack, Solid State Phys. 34, 1 (1979)

    Google Scholar 

  25. P.G. Klemens, in Solid State Physics, vol. 7, ed. by F. Seitz, D. Turnbull (Academic, New York, 1958), p. 1

    Google Scholar 

  26. B. Abeles, Phys. Rev. 131(N5), 1906–1911 (1963)

    Article  Google Scholar 

  27. C. Ruttanapun, S. Maensiri, J. Phys. D Appl. Phys. 48, 495103 (2015)

    Article  Google Scholar 

  28. C. Ruttanapun, J. Solid State Chem. 215, 43–49 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

C. Ruttanapun would like to thank the Thailand Research Fund (TRF) and King Mongkut’s Institute of Technology Ladkrabang (KMITL) (Contract Number: TRG5880013) for financial support. The author would like to thank Density Laboratory, Mechanical Department, National Institute of Metrology Thailand for provide measured density value of all samples. Additional financial support was provided by a grant from the KMITL Research Fund of King Mongkut’s Institute of Technology Ladkrabang, Ministry of Education, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chesta Ruttanapun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hongaromkij, Y., Rudradawong, C. & Ruttanapun, C. Effect of Ga-substitution for Fe sites of delafossite CuFe1−x Ga x O2 (x = 0.0, 0.1, 0.3, 0.5) on thermal conductivity. J Mater Sci: Mater Electron 27, 6438–6444 (2016). https://doi.org/10.1007/s10854-016-4583-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4583-5

Keywords

Navigation