Skip to main content
Log in

Electrodeposition of CIGS nanostructure photovoltaic absorber layers: effect of deposition time

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Electrodeposited CIGS absorber layers are fabricated by a three-stage electrodeposition process in which: (a) CIGS is electrodeposited in the first stage, (b) Cu is electrodeposited in the second stage, and (c) an In layer is deposited in the final third stage. All films are electrodeposited from an aqueous solution containing CuSO4, InCl3, SeCl4 and GaCl3 (pH around 1.5 adjusted with H2SO4) at room temperature in a three-electrode cell configuration. The electrodeposited films are selenized at high temperature under argon atmosphere. The effects of deposition parameters such as: the deposition time and potential; and type of substrate were investigated. It was found that morphology and particle size of the products could be greatly affected by these parameters. As a result, under the same condition, the particles size of CIGS films electrodeposited on the FTO glass as substrate are smaller than the particles size of CIGS electrodeposited on the Mo-coated glass. The In, Ga and Cu–In–Ga–Se electrodeposition systems were investigated by cyclic voltammetry. CIGS nanostructures were characterized by X-ray powder diffraction, scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy, atomic force microscopy, cross-section SEM, and UV–Vis diffuse reflectance spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. X. Donglin, X. Man, L. Jianzhuang, Z. Xiujian, J. Mater. Sci. 41, 1875 (2006)

    Article  Google Scholar 

  2. R.N. Bhattacharya, W. Batchelor, J.E. Granata, F. Hasoon, H. Wiesner, K. Ramanathan, J. Keane, R.N. Noufi, Sol. Energy Mater. Sol. Cells 55, 83 (1998)

    Article  Google Scholar 

  3. T. Negami, T. Satoh, Y. Hashimoto, S. Nishiwaki, S. Shimakawa, S. Hayashi, Sol. Energy Mater. Sol. Cells 67, 1 (2001)

    Article  Google Scholar 

  4. H.K. Song, S.G. Kim, H.J. Kim, K.W. Kang, J.C. Lee, K.H. Yoon, Sol. Energy Mater. Sol. Cells 75, 145 (2003)

    Article  Google Scholar 

  5. M. Venkatachalam, M.D. Kannan, N. Muthukumarasamy, S. Prasanna, S. Jayakumar, R. Balasundaraprabhu, M. Saroja, Sol. Energy 83, 1652 (2009)

    Article  Google Scholar 

  6. Y. Lai, F. Liu, Z. Zhang, J. Liu, Y. Li, S. Kuang, J. Li, Y. Liu, Electrochim. Acta 54, 3004 (2009)

    Article  Google Scholar 

  7. M.A. Hossain, Z. Tianliang, L.K. Keat, L. Xianglin, R.R. Prabhakar, S.K. Batabyal, S.G. Mhaisalkar, L.H. Wong, J. Mater. Chem. A 3, 4147 (2015)

    Article  Google Scholar 

  8. M.G. Faraj, K. Ibrahim, A. Salhin, Mater. Sci. Semicond. Proc. 15, 165 (2012)

    Article  Google Scholar 

  9. J.W. Dini, Electrodeposition. The Materials Science of Coatings and Substrates (Noyes Publications, Park Ridge, 1993)

    Google Scholar 

  10. R.N. Bhattacharya, W. Batchelor, J.F. Hiltner, J.R. Sites, Appl. Phys. Lett. 75, 1431 (1999)

    Article  Google Scholar 

  11. M. Pourbaix, Atlas d’Equilibres Electrochimiques à 25°C (Gauthier-Villars/Cebelcor, Paris/Brussels, 1963)

    Google Scholar 

  12. L. Thouin, S. Massaccesi, S. Sanchez, J. Vedel, J. Electroanal. Chem. 374, 81 (1994)

    Article  Google Scholar 

  13. M. Kemell, H. Saloniemi, M. Ritala, M. Leskela, J. Electrochem. Soc. 148, C110 (2001)

    Article  Google Scholar 

  14. L. Ribeaucourt, G. Savidand, D. Lincot, E. Chassaing, Electrochim. Acta 56, 6628 (2011)

    Article  Google Scholar 

  15. S. Chen, X.G. Gong, S.-H. Wei, Phys. Rev. B 75, 205209 (2007)

    Article  Google Scholar 

  16. H. Lee, J.-H. Lee, Y.-H. Hwang, Y. Kim, Curr. Appl. Phys. 14, 18 (2014)

    Article  Google Scholar 

  17. V.N. Dhanwate, N.B. Chaure, Appl. Nanosci. 3, 1 (2013)

    Article  Google Scholar 

  18. N.B. Chaure, J. Young, A.P. Samantilleke, I.M. Dharmadasa, Sol. Energy Mater. Sol. Cells 81, 125 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

Authors are grateful to the council of University of Kashan for their unending effort to provide financial support to undertake this work by Grant No. 463561-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Behpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmaeili-Zare, M., Behpour, M. & Zahedifar, M. Electrodeposition of CIGS nanostructure photovoltaic absorber layers: effect of deposition time. J Mater Sci: Mater Electron 27, 1645–1654 (2016). https://doi.org/10.1007/s10854-015-3936-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3936-9

Keywords

Navigation