Skip to main content
Log in

Electromigration effect on Sn-58 % Bi solder joints with various substrate metallizations under current stress

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The electromigration behavior of low-melting temperature Sn-58Bi (in wt%) solder joints was investigated with a high current density between 3 and 4.5 × 103 A/cm2 between 80 and 110 °C. In order to analyze the impact of various substrate metallizations on the electromigration performance of the Sn-58Bi joint, we used representative substrate metallizations including electroless nickel immersion gold (ENIG), electroless nickel electroless palladium immersion gold (ENEPIG), and organic solderability preservatives (OSP). As the applied current density increased, the time to failure (TTF) for electromigration decreased regardless of the temperature or substrate metallizations. In addition, the TTF slightly decreased with increasing temperature. The substrate metallization significantly affected the TTF for the electromigration behavior of the Sn-58Bi solder joints. The substrate metallizations for electromigration performance of the Sn-58Bi solder are ranked in the following order: OSP-Cu, ENEPIG, and ENIG. Due to the polarity effect, current stressing enhanced the fast growth of intermetallic compounds (IMCs) at the anode interface. Cracks occurred at the Ni3Sn4 + Ni3P IMC/Cu interfaces on the cathode sides in the Sn-58Bi/ENIG joint and the Sn-58Bi/ENEPIG joint; this was caused by the complete consumption of the Ni(P) layer. Alternatively, failure occurred via deformation of the bulk solder in the Sn-58Bi/OSP-Cu joint. The experimental results confirmed that the electromigration reliability of the Sn-58Bi/OSP-Cu joint was superior to those of the Sn-58Bi/ENIG or Sn-58Bi/ENEPIG joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C. Chen, H.M. Tong, K.N. Tu, Annu. Rev. Mater. Res. 40, 51 (2010)

    Article  Google Scholar 

  2. T.C. Chiu, K.L. Lin, J. Mater. Res. 23, 264 (2008)

    Article  Google Scholar 

  3. D. Yang, Y.C. Chan, B.Y. Wu, M. Pecht, J. Mater. Res. 23, 2333 (2008)

    Article  Google Scholar 

  4. K.N. Tu, J. Appl. Phys. 94, 5451 (2003)

    Article  Google Scholar 

  5. E.C.C. Yeh, W.J. Choi, K.N. Tu, P. Elenius, H. Balkan, Appl. Phys. Lett. 80, 580 (2002)

    Article  Google Scholar 

  6. Y.H. Lin, Y.C. Hu, C.M. Tsai, C.R. Kao, K.N. Tu, Acta Mater. 53, 2029 (2005)

    Article  Google Scholar 

  7. J.R. Huang, C.M. Tsai, Y.W. Lin, C.R. Kao, J. Mater. Res. 23, 250 (2008)

    Article  Google Scholar 

  8. Y.C. Hu, Y.H. Lin, C.R. Kao, K.N. Tu, J. Mater. Res. 18, 2544 (2003)

    Article  Google Scholar 

  9. C.M. Tsai, Y.S. Lai, Y.L. Lin, C.W. Chang, C.R. Kao, J. Electron. Mater. 35, 1010 (2006)

    Article  Google Scholar 

  10. B.F. Dyson, T.R. Anthony, D. Turnbull, J. Appl. Phys. 38, 3408 (1967)

    Article  Google Scholar 

  11. F.H. Huang, H.B. Huntington, Phys. Rev. B 9, 1479 (1974)

    Article  Google Scholar 

  12. R. Labie, W. Ruythooren, J.V. Humbeeck, Intermetallics 15, 396 (2007)

    Article  Google Scholar 

  13. S.S. Ha, J.W. Kim, J.W. Yoon, S.O. Ha, S.B. Jung, J. Electron. Mater. 38, 70 (2009)

    Article  Google Scholar 

  14. D.W. Kim, J.K.J. Lee, M.J. Lee, S.Y. Pai, S. Chen, F. Kuo, in Proceedings 60th Electronic Components and Technology Conference (2010), p. 1841

  15. L. Nicholls, R. Darveaux, A. Syed, S. Loo, T.Y. Tee, T.A. Wassick, B. Batchelor, in Proceedings of the 59th Electronic Components and Technology Conference (San Diego, 2009), p. 914

  16. X. Gu, Y.C. Chan, J. Appl. Phys. 105, 093537 (2009)

    Article  Google Scholar 

  17. H. He, H. Zhao, F. Guo, G. Xu, J. Mater. Sci. Technol. 28, 46 (2012)

    Article  Google Scholar 

  18. F. Guo, G. Xu, J. Sun, Z. Xia, Y. Lei, Y. Shi, X. Li, J. Electron. Mater. 38, 2756 (2009)

    Article  Google Scholar 

  19. L. Chen, C. Chen, J. Mater. Res. 21, 962 (2006)

    Article  Google Scholar 

  20. J.H. Kim, Y.C. Lee, S.M. Lee, S.B. Jung, Microelectron. Eng. 120, 77 (2014)

    Article  Google Scholar 

  21. C.T. Lu, H.W. Tseng, C.H. Chang, T.S. Huang, C.Y. Liu, Appl. Phys. Lett. 96, 232103 (2010)

    Article  Google Scholar 

  22. H. Gan, K.N. Tu, J. Appl. Phys. 97, 063514 (2005)

    Article  Google Scholar 

  23. J.W. Yoon, S.B. Jung, J. Mater. Sci. 39, 4211 (2004)

    Article  Google Scholar 

  24. J.O. Suh, K.N. Tu, G.V. Lutsenko, A.M. Gusak, Acta Mater. 56, 1075 (2008)

    Article  Google Scholar 

  25. P.J. Shang, Z.Q. Liu, D.X. Li, J.K. Shang, J. Electron. Mater. 38, 2579 (2009)

    Article  Google Scholar 

  26. M. Lu, D.Y. Shih, P. Lauro, C. Goldsmith, D.W. Henderson, Appl. Phys. Lett. 92, 211909 (2008)

    Article  Google Scholar 

  27. J.W. Yoon, C.B. Lee, S.B. Jung, Mater. Trans. 43, 1821 (2002)

    Article  Google Scholar 

  28. J.R. Black, Mass transport of aluminum by momentum exchange with conducting electrons, in Sixth Annual Reliability Physics Symposium (Los Angeles, 1967), p. 148

  29. J.R. Black, IEEE Trans. Electron Devices 16, 338 (1969)

    Article  Google Scholar 

  30. J.R. Black, Proc. IEEE 57, 1587 (1969)

    Article  Google Scholar 

  31. M. Shatzkes, J. Lloyd, J. Appl. Phys. 59, 3890 (1986)

    Article  Google Scholar 

  32. R. Kirchheim, Acta Metall. Mater. 40, 309 (1962)

    Article  Google Scholar 

  33. M.A. Korhonen, P. Borgesen, K.N. Tu, C.Y. Li, J. Appl. Phys. 73, 3790 (1993)

    Article  Google Scholar 

  34. J.J. Clement, C.V. Thompson, J. Appl. Phys. 78, 900 (1995)

    Article  Google Scholar 

  35. S.H. Chae, X. Zhang, H.L. Chao, K.H. Lu, P.S. Ho, in Proceedings 56th Electronic Components and Technology Conference (2006), p. 656

  36. C. Basaran, S. Li, D.C. Hopkins, D. Veychard, J. Appl. Phys. 106, 013707 (2009)

    Article  Google Scholar 

  37. S.H. Chae, X. Zhang, K.H. Lu, H.L. Chao, P.S. Ho, M. Ding, P. Su, T. Uehling, L.N. Ramanathan, J. Mater. Sci. Mater. Electron. 18, 247 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeong-Won Yoon or Seung-Boo Jung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, SM., Yoon, JW. & Jung, SB. Electromigration effect on Sn-58 % Bi solder joints with various substrate metallizations under current stress. J Mater Sci: Mater Electron 27, 1105–1112 (2016). https://doi.org/10.1007/s10854-015-3858-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3858-6

Keywords

Navigation