Skip to main content
Log in

ZnS/graphene hybrid nanomaterials: synthesis, characterization, and enhanced electrochemical performances

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, a facile and efficient strategy for preparing zinc sulfide–graphene nanosheets (ZnS/GNs) hybrid nanomaterials was assisted via a facile and efficient solvothermal method. Field emission gun scanning electron microscopy with energy-dispersive X-ray analysis, transmission electron microscopy, Fourier transform infrared spectrometer, X-ray photoelectron spectra were used. It was observed that the GNs were partially covered by ZnS homogeneous nanoballs. The electrochemical performances of ZnS/GNs hybrid nanomaterials as electrodes were measured and investigated by cyclic voltammetry and galvanostatic charge/discharge techniques. Results indicated that the introduction of GNs highly improved the electrocatalytic activity, durability, and stability of ZnS/GNs hybrid nanomaterials. Thus, the ZnS/GNs nanocomposites are expected to be an effective electrode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Lou, Y. Wang, S. Zhou et al., Mater. Lett. 67, 169–172 (2012)

    Article  Google Scholar 

  2. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183–191 (2007)

    Article  Google Scholar 

  3. Z. Mo, P. Liu, R. Guo et al., Mater. Lett. 68, 416–418 (2011)

    Article  Google Scholar 

  4. J.C. Meyer, A.K. Geim, M.I. Katsnelson, Nature 446, 60–63 (2007)

    Article  Google Scholar 

  5. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Adv. Mater. 22, 3906–3924 (2010)

    Article  Google Scholar 

  6. P. Avouris, Z. Chen, V. Perebeinos, Nat. Nanotechnol. 2, 605–615 (2007)

    Article  Google Scholar 

  7. C.H. Xu, X.B. Wang, J.C. Wang, H.T. Hu, Chem. Phys. Lett. 498, 162–167 (2010)

    Article  Google Scholar 

  8. J. Jancar, J.F. Douglas, F.W. Starr, S.K. Kumar, Polymer 51, 3321–3343 (2010)

    Article  Google Scholar 

  9. J.C. Wang, C.H. Xu, H.T. Hu, X.B. Wang, J. Nanopart. Res. 13, 869–878 (2011)

    Article  Google Scholar 

  10. H.T. Hu, X.B. Wang, J.C. Wang, L. Wan, Chem. Phys. Lett. 484, 247–253 (2010)

    Article  Google Scholar 

  11. Z. Liu, J.T. Robinson, X.M. Sun, H.J. Dai, J. Am. Chem. Soc. 130, 10876–10877 (2008)

    Article  Google Scholar 

  12. C.Y. Wang, D. Li, C.O. Too, G.G. Wallace, Chem. Mater. 21, 2604–2606 (2009)

    Article  Google Scholar 

  13. X. Wang, L.J. Zhi, K. Mullen, Nano Lett. 8, 323–327 (2008)

    Article  Google Scholar 

  14. S. Watcharotone, D.A. Dikin, S. Stankovich, R. Piner, Nano Lett. 7, 1888–1892 (2007)

    Article  Google Scholar 

  15. G. Eda, H.E. Unalan, N. Rupesinghe, Appl. Phys. Lett. 93, 233502–233504 (2008)

    Article  Google Scholar 

  16. C. Xu, X. Wang, J.W. Zhu, J. Phys. Chem. C 112, 19841–19845 (2008)

    Article  Google Scholar 

  17. X.Z. Zhou et al., J. Phys. Chem. C 113, 10842–10846 (2009)

    Article  Google Scholar 

  18. F.Z. Liu, X. Shao, J.Q. Wang et al., J. Alloy. Compd. 551, 327–332 (2013)

    Article  Google Scholar 

  19. S. Bong, Y.R. Kim, I. Kim, S. Woo, S. Uhm, J. Lee, H. Kim, Electrochem. Commun. 12, 129–131 (2010)

    Article  Google Scholar 

  20. F.Z. Liu, X. Shao, H.Y. Li, M. Wang, S.R. Yang, Mater. Lett. 108, 125–128 (2013)

    Article  Google Scholar 

  21. Y. Li, J. Chen, C. Zhu, L. Wang, D. Zhao, S. Zhuo, Y. Wu, Acta A 60, 1719–1724 (2004)

    Article  Google Scholar 

  22. F.Z. Liu, X. Shao, S.R. Yang, Mater. Sci. Semicond. Process. 34, 104–108 (2015)

    Article  Google Scholar 

  23. S.M. Lam, J.C. Sin, A.Z. Abdullah, A.R. Mohamed, J. Mol. Catal. A Chem. 370, 123–131 (2013)

    Article  Google Scholar 

  24. S. Rabieh, M. Bagheri, M. Heydari, E. Badiei, Mater. Sci. Semicond. Process. 26, 244–250 (2014)

    Article  Google Scholar 

  25. Huiyoun Shin, Dongseon Jang, Youngil Jang, J. Mater. Sci. Mater. Electron. 24, 3744–3748 (2013)

    Article  Google Scholar 

  26. G. Williams, P.V. Kama, Langmuir 25, 13869–13873 (2009)

    Article  Google Scholar 

  27. I.V. Lightcap, T.H. Kosel, P.V. Kamat, Nano Lett. 10, 577–583 (2010)

    Article  Google Scholar 

  28. A.N. Cao, Z. Liu, S.S. Chu, M.H. Wu, Adv. Mater. 22, 103–106 (2009)

    Article  Google Scholar 

  29. M. Feng, R.Q. Sun, H.B. Zhan, Y. Chen, Nanotechnology 21, 075601–075607 (2010)

    Article  Google Scholar 

  30. Jian Cao, Qianyu Liu, Donglai Han et al., J. Mater. Sci. Mater. Electron. 26, 646–650 (2015)

    Article  Google Scholar 

  31. J.S. Hu, L.L. Ren, Y.G. Guo, H.P. Liang, Angew. Chem. Int. Ed. 44, 1269–1273 (2005)

    Article  Google Scholar 

  32. C. Nethravathi, T. Nisha, N. Ravishankar, C. Shivakumara, M. Rajamathi, Carbon 47, 2054–2059 (2009)

    Article  Google Scholar 

  33. L.P. Xue, C.F. Shen, M.B. Zheng, H.L. Lu, N.W. Li, G.B. Ji, L.J. Pan, J.M. Cao, Mater. Lett. 65, 198–200 (2011)

    Article  Google Scholar 

  34. W.S. Hummers, J. Am. Chem. Soc. 80, 1339 (1958)

    Article  Google Scholar 

  35. J.F. Shen, Y.Z. Hu, C. Li, C. Qin, M.X. Ye, Small 5, 82–85 (2009)

    Article  Google Scholar 

  36. J.G. Yu, H.G. Yu, B. Cheng, M.H. Zhou, X.J.J. Zhao, Mol. Catal. A 253, 112–118 (2006)

    Article  Google Scholar 

  37. H.C. Tao, X.L. Yang, L.L. Zhang, S.B. Ni, J. Phys. Chem. Solids 75(11), 1205–1209 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No. 51172102).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fengzhen Liu or Xin Shao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Liu, M., Shao, X. et al. ZnS/graphene hybrid nanomaterials: synthesis, characterization, and enhanced electrochemical performances. J Mater Sci: Mater Electron 26, 6495–6501 (2015). https://doi.org/10.1007/s10854-015-3241-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3241-7

Keywords

Navigation