Skip to main content
Log in

Facile synthesis of honeycomb structured SnO/SnO2 nanocomposites by microwave irradiation method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

SnO/SnO2 nancomposites with honeycomb structure have been synthesized by microwave irradiation method. The prepared nanocomposites were characterized by X-ray diffraction (XRD), Raman spectra, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM) and Photoluminescence spectroscopy techniques. It has been found that the size and morphology of the SnO/SnO2 can be controlled by adjusting the microwave irradiation time. The XRD analysis revealed the formation of nanosized particles with tetragonal phase. The SEM images of the nanocomposites showed the honeycomb structured morphology. The SnO/SnO2 ceramic nanocomposites also exhibit photoluminescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Karuppuchamy, M. Iwasaki, H. Minoura, Vacuum 81, 708–712 (2007)

    Article  Google Scholar 

  2. H. Matsui, K. Kira, S. Karuppuchamy, M. Yoshihara, Curr. Appl. Phys. 9, 592–597 (2009)

    Article  Google Scholar 

  3. H. Matsui, S. Yamamoto, Y. Izawa, S. Karuppuchamy, M. Yoshihara, Mater. Chem. Phys. 103, 127–131 (2007)

    Article  Google Scholar 

  4. H. Matsui, K. Santhi, S. Sugiyama, M. Yoshihara, S. Karuppuchamy, Ceram. Int. 40, 2169–2172 (2014)

    Article  Google Scholar 

  5. T. Kawahara, T. Kuroda, H. Matsui, M. Mishima, S. Karuppuchamy, Y. Seguchi, M. Yoshihara, J. Mater. Sci. 42, 3708–3713 (2007)

    Article  Google Scholar 

  6. T. Kawahara, H. Miyazaki, S. Karuppuchamy, H. Matsui, M. Ito, M. Yoshihara, Vacuum 81, 680–685 (2007)

    Article  Google Scholar 

  7. S. Yamamoto, H. Matsui, S. Ishiyama, S. Karuppuchamy, M. Yoshihara, Mater. Sci. Eng. B 135, 120–124 (2006)

    Article  Google Scholar 

  8. K. Rajendra Prasad, N. Miura, Electrochem. Commun. 6, 849–852 (2004)

    Article  Google Scholar 

  9. H.C. Chiu, C.S. Yeh, J. Phys. Chem. C 111, 7256–7259 (2007)

    Article  Google Scholar 

  10. D. Cummins, G. Boschloo, M. Ryan, D. Corr, S.N. Rao, D. Fitzmaurice, J. Phys. Chem. B 104, 11449–11459 (2000)

    Article  Google Scholar 

  11. Q. Zhou, L. Yang, G. Wang, Y. Yang, Biosens. Bioelectron. 49, 25–31 (2013)

    Article  Google Scholar 

  12. Y. Zhang, A. Kolmakov, Y. Lilach, M. Moskovits, J. Phys. Chem. B 109, 1923–1929 (2005)

    Article  Google Scholar 

  13. S. Fujihara, T. Maeda, H. Ohgi, E. Hosono, H. Imai, S.H. Kim, Langmuir 20, 6476–6481 (2004)

    Article  Google Scholar 

  14. H. Matsui, S. Karuppuchamy, J. Yamaguchi, M. Yoshihara, J. Photochem. Photobiol. A Chem. 189, 280–285 (2007)

    Article  Google Scholar 

  15. R. Dhilip Kumar, S. Karuppuchamy, Ceram. Int. 40, 12397–12402 (2014)

    Article  Google Scholar 

  16. R. Dhilip Kumar, S. Karuppuchamy, J. Mater. Sci.: Mater. Electron. 26, 3256–3261 (2015)

    Google Scholar 

  17. H. Matsui, S. Yamamoto, T. Sasai, S. Karuppuchamy, M. Yoshihara, Electrochemistry 75, 345–348 (2007)

    Article  Google Scholar 

  18. H. Matsui, N. Bando, S. Karuppuchamy, J.-M. Jeong, M. Yoshihara, Superlattices Microstruct. 50, 427–436 (2011)

    Article  Google Scholar 

  19. H. Matsui, N. Bandou, S. Karuppuchamy, M.A. Hassan, M. Yoshihara, Ceram. Int. 38, 1605–1610 (2012)

    Article  Google Scholar 

  20. S. Karuppuchamy, N. Suzuki, S. Ito, T. Endo, Curr. Appl. Phys. 9, 243–248 (2009)

    Article  Google Scholar 

  21. K. Santhi, P. Manikandan, C. Rani, S. Karuppuchamy, Appl. Nanosci. 5, 373–378 (2015)

    Article  Google Scholar 

  22. S. Karuppuchamy, S. Ito, Vacuum 82, 547–550 (2008)

    Article  Google Scholar 

  23. M. Thamima, S. Karuppuchamy, Adv. Sci. Eng. Med. 7, 18–25 (2015)

    Article  Google Scholar 

  24. H. Giefers, F. Porsch, G. Wortmann, Solid State Ionics 176, 199–207 (2005)

    Article  Google Scholar 

  25. F.I. Pires, E. Joanni, R. Savu, M.A. Zaghete, E. Longo, J.A. Verela, Mater. Lett. 62, 239–242 (2008)

    Article  Google Scholar 

  26. Y.C. Her, J.Y. Wu, Y.R. Lin, S.Y. Tsai, Appl. Phys. Lett. 89, 043115 (2006)

    Article  Google Scholar 

  27. T. Moon, S.T. Hwang, D.R. Jung, D. Son, C. Kim, J. Kim, M. Kang, B. Park, J. Phys. Chem. C 111, 4164–4167 (2007)

    Article  Google Scholar 

  28. H.T. Chen, X.L. Wu, S.J. Xiong, W.C. Zhang, J. Zhu, J. Appl. Phys. A 97, 365–368 (2009)

    Article  Google Scholar 

  29. M. Torabi, S.K. Sadrnezhaad, J. Power Sources 196, 399–404 (2011)

    Article  Google Scholar 

  30. J. Jeong, S.P. Choi, C.I. Chang, D.C. Shin, J.S. Park, B.T. Lee, Y.J. Park, H. Song, J Solid State Commun. 127, 595–597 (2003)

    Article  Google Scholar 

  31. E.J.H. Lee, C. Ribeiro, T.R. Giraldi, E. Longo, E.R. Leite, Appl. Phys. Lett. 84, 1745–1747 (2004)

    Article  Google Scholar 

  32. A. Triphathi, R.K. Shukla, Bull. Mater. Sci. 37, 417–423 (2014)

    Article  Google Scholar 

  33. A. Shanmugasundaram, P. Basak, L. Satyanarayana, S.V. Manorama, Sens. Actuators, B 185, 265–273 (2013)

    Article  Google Scholar 

  34. A. Jagminas, F.M. Morales, K. Mazeika, G.P. Veronese, J. Reklaitis, J.G. Lozano, J.M. Manuel, R. García, M. Kurtinaitiene, R. Juskenas, D. Baltrunas, J. Phys. Chem. C 115, 4495–4501 (2011)

    Article  Google Scholar 

  35. L.P. Chikhale, J.Y. Patil, A.V. Rajgure, F.I. Shaikh, I.S. Mulla, S.S. Suryavanshi, Measurement 57, 46–52 (2014)

    Article  Google Scholar 

  36. J. Sundqvist, J. Lu, M. Ottosson, A. Harsta, Thin Solid Films 514, 63–68 (2006)

    Article  Google Scholar 

  37. O. Lupan, L. Chow, G. Chai, A. Schulte, S. Park, H. Heinrich, Mater. Sci. Eng. B 157, 101–104 (2009)

    Article  Google Scholar 

  38. J. Geurts, S. Rau, W. Richter, F.J. Schmitte, Thin Solid Films 121, 217–225 (1984)

    Article  Google Scholar 

  39. J.L. Gole, A.V. Iretskii, M.G. White, A. Jacob, W.B. Carter, S.M. Prokes, A.S. Erickson, Chem. Mater. 16, 5473–5481 (2004)

    Article  Google Scholar 

  40. A. Yu, R. Frech, J. Power Sources 104, 97–100 (2002)

    Article  Google Scholar 

  41. P. Sangeetha, V. Sasirekha, V. Ramakrishnan, J. Raman Spectrosc. 42, 1634–1639 (2011)

    Article  Google Scholar 

  42. P.S. Patil, R.K. Kawar, T. Seth, D.P. Amalnerkar, P.S. Chigare, Ceram. Int. 29, 725–734 (2003)

    Article  Google Scholar 

  43. M.K. Singh, M.C. Mathpal, A. Agarwal, Chem. Phys. Lett. 536, 87–91 (2012)

    Article  Google Scholar 

  44. L.M. Fang, X.T. Zu, Z.J. Li, S. Zhu, C.M. Liu, W.L. Zhou, L.M. Wang, J. Alloys Compd. 454, 261–267 (2008)

    Article  Google Scholar 

  45. F. Gu, S.F. Wang, M.K. Lu, Y.K. Qi, G.J. Zhou, D. Xu, D.R. Yuan, Inorg. Chem. Commun. 6, 882–885 (2003)

    Article  Google Scholar 

  46. D.A. Popescu, F.B. Verduraz, Catal. Today 70, 139–154 (2001)

    Article  Google Scholar 

  47. P. Boroojerdian, Int. J. Nanosci. Nanotechnol. 9, 95–100 (2013)

    Google Scholar 

  48. J.Q. Hu, X.L. Ma, N.G. Shang, Z.Y. Xie, N.B. Wong, C.S. Lee, S.T. Lee, J. Phys. Chem. B 106, 3823–3826 (2002)

    Article  Google Scholar 

  49. J.H. He, T.H. Wu, C.L. Hsin, K.M. Li, L.J. Chen, Y.L. Chueh, L.J. Chou, Z.L. Wang, Small 2, 116–120 (2006)

    Article  Google Scholar 

  50. N. Chiodini, A. Paleari, D. DiMartino, G. Spinolo, Appl. Phys. Lett. 81, 1702–1704 (2002)

    Article  Google Scholar 

  51. F. Gu, S.F. Wang, C.F. Song, M.K. Lu, Y.X. Qi, G.J. Zhou, D. Xu, D.R. Yuan, Chem. Phys. Lett. 372, 451–454 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Department of physics, Alagappa University for providing the XRD, PL and FTIR characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Karuppuchamy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhilip Kumar, R., Karuppuchamy, S. Facile synthesis of honeycomb structured SnO/SnO2 nanocomposites by microwave irradiation method. J Mater Sci: Mater Electron 26, 6439–6443 (2015). https://doi.org/10.1007/s10854-015-3234-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3234-6

Keywords

Navigation