Skip to main content

Advertisement

Log in

Poling electric field dependent domain switching and piezoelectric properties of mechanically activated (Pb0.92La0.08)(Zr0.60Ti0.40)O3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

(Pb0.92La0.08)(Zr0.60Ti0.40)O3 (PLZT 8/60/40) ceramics were prepared via a combinatorial approach of high energy mechanical ball milling (mechanical activation), followed by cold isostatic pressing. Electrical properties of the piezoelectric ceramics are greatly influenced by the poling conditions (poling electric field, poling time and poling temperature). In this present study, the effect of the poling electric fields on the piezoelectric properties of PLZT 8/60/40 ceramics was investigated. It is a common practice to subject piezoelectric ceramics to electric fields well beyond their coercive fields, in order to pole them but here the measured values of piezoelectric (d33 and g33) and electromechanical coupling coefficients (kp, k33 and k31) at different poling fields show that a ferroelectric material can be poled at ~5 kV/cm (<0.5 Ec), far below the coercive field without compromising the induced high piezoelectricity. The results were discussed with the help of polarization, current and strain versus electric field curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G.H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999)

    Article  Google Scholar 

  2. Y.M. Jin, Y.U. Wang, A.G. Khachaturyan, J.F. Li, D. Viehland, J. Appl. Phys. 94, 3629 (2003)

    Article  Google Scholar 

  3. B. Noheda, D.E. Cox, G. Shirane, J.A. Gonzalo, L.E. Cross, S.E. Park, Appl. Phys. Lett. 74, 2059 (1999)

    Article  Google Scholar 

  4. R. Guo, L.E. Cross, S.E. Park, B. Noheda, D.E. Cox, G. Shirane, Phys. Rev. Lett. 84, 5423 (2000)

    Article  Google Scholar 

  5. L. Pdungsap, N. Udomkan, S. Boonyuen, P. Winotai, Sens. Actuators, A 122, 250 (2005)

    Article  Google Scholar 

  6. M. Hinterstein, K.A. Schoenau, J. Kling, H. Fuess, M. Knapp, H. Kungl, M.J. Hoffmann, J. Appl. Phys. 108, 024110 (2010)

    Article  Google Scholar 

  7. G. Viola, K.B. Chong, M. Eriksson, Z. Shen, J. Zeng, Q. Yin et al., Appl. Phys. Lett. 103, 182903 (2013)

    Article  Google Scholar 

  8. T.M. Kamel, G. deWith, J. Euro. Ceram. Soc. 28, 851 (2008)

    Article  Google Scholar 

  9. B.M. Jin, J. Kim, S.C. Kim, Appl. Phys. A 65, 53 (1997)

    Article  Google Scholar 

  10. C.A. Randall, N. Kim, J.P. Kucera, W. Cao, T.R. Shrout, J. Am. Ceram. Soc. 81, 677 (1998)

    Article  Google Scholar 

  11. L. Zhang, Q. Sun, W. Ma, Y. Zhang, H. Liu, J. Mater. Sci.: Mater. Electron. 23, 688 (2012)

    Google Scholar 

  12. Y. Zhao, R. Huang, R. Liu, H. Zhou, Ceram. Int. 38, 6067 (2012)

    Article  Google Scholar 

  13. S. Su, R. Zuo, S. Lu, Z. Xu, X. Wang, L. Li, Curr. Appl. Phys. 11, S120 (2011)

    Article  Google Scholar 

  14. D. Damjanovic, Rep. Prog. Phys. 61, 1267 (1998)

    Article  Google Scholar 

  15. G.H. Haertling, C.E. Land, J. Am. Ceram. Soc. 54, 1 (1971)

    Article  Google Scholar 

  16. A. Kumar, V.V. BhanuPrasad, K.C. JamesRaju, A.R. James, J. Alloys Compd. 599, 53 (2014)

    Article  Google Scholar 

  17. A.R. James, J. Paul Praveen, M. Premkumar, V.V. Bhanu Prasad, Mater. Res. Bull. 47, 3459 (2012)

    Article  Google Scholar 

  18. T.M. Kamel, F.X.N.M. Kools, G. deWith, J. Eur. Ceram. Soc. 27, 2471 (2007)

    Article  Google Scholar 

  19. A.Q. Jiang, H.J. Lee, C.S. Hwang, J.F. Scott, Adv. Funct. Mater. 22, 192 (2012)

    Article  Google Scholar 

  20. W.J. Merz, Phys. Rev. 95, 690 (1954)

    Article  Google Scholar 

  21. J.F. Scott, L. Kammerdiner, M. Parris, S. Traynor, V. Ottenbacher, A. Shawabkeh, W.F. Oliver, J. Appl. Phys. 64, 787 (1988)

    Article  Google Scholar 

  22. S. Jesse, B.J. Rodriguez, S. Choudhury, A.P. Baddorf, I. Vrejoiu, D. Hesse, M. Alexe et al., Nat. Mater. 7, 209 (2008)

    Article  Google Scholar 

  23. H. Du, F. Tang, F. Luo, W. Zhou, S. Qu, Z. Pei, Mater. Sci. Eng., B 137, 175 (2007)

    Article  Google Scholar 

  24. L.B. Kong, J. Ma, T.S. Zhang, J. Mater. Res. 16, 1636 (2001)

    Article  Google Scholar 

  25. W. Hackenberger, M.J. Pan, V. Vedula, P. Pertsch, W. Cao, C. Randall, T. R. Shrout, in Proceedings of the SPIE Conference Smart Materials Technology, San Diego, CA, vol. 3324, pp. 28–36, March, 1998

  26. A. Gruverman, D. Wu, J.F. Scott, Phys. Rev. Lett. 100, 097601 (2008)

    Article  Google Scholar 

  27. A.K. Tagantsev, I. Stolichnov, N. Setter, J.S. Cross, M. Tsukada, Phys. Rev. B 66, 214109 (2002)

    Article  Google Scholar 

  28. J. Li, B. Nagaraj, H. Liang, W. Cao, C.H. Lee, R. Ramesh, Appl. Phys. Lett. 84, 1174 (2004)

    Article  Google Scholar 

  29. V.L. Ginzburg, Zh Eksp. Teor. Fiz. 15, 739 (1945) [J. Phys. X 107 (1946)]

  30. S. Ducharme, V.M. Fridkin, A.V. Bune, S.P. Palto, L.M. Blinov, N.N. Petukhova et al., Phy. Rev. Lett. 84, 175 (2000)

    Article  Google Scholar 

  31. W.J. Merz, J. Appl. Phys. 27, 938 (1956)

    Article  Google Scholar 

  32. M.E. Lines, A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials, Ch. 11 (Clarendon Press, Oxford, 1977)

    Google Scholar 

  33. Y.A. Genenko, S. Zhukov, S.V. Yampolskii, J. Schütrumpf, R. Dittmer, W. Jo et al., Adv. Funct. Mater. 22, 2058 (2012)

    Article  Google Scholar 

  34. H. Guo, C. Ma, X. Liu, X. Tan, Appl. Phys. Lett. 102, 092902 (2013)

    Article  Google Scholar 

  35. M. Ozgul, S. Trolier-McKinstry, C.A. Randall, J. Appl. Phys. 95, 4296 (2004)

    Article  Google Scholar 

  36. D. Viehland, Y.H. Chen, J. Appl. Phys. 88, 6696 (2000)

    Article  Google Scholar 

  37. M.A. Wahab, Solid State Physics: Structure and Properties of Materials, Ch. 14 (Narosa publishing house, New Delhi, 2013)

    Google Scholar 

  38. J. Frantti, S. Eriksson, S. Hull, V. Lantto, H. Rudlof, K. Kakihana, J. Phys.: Condens. Matter 15, 6031 (2003)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from DRDO for carrying out the research work and express their gratitude to the Director DMRL for his interest in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajeet Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Bhanu Prasad, V.V., James Raju, K.C. et al. Poling electric field dependent domain switching and piezoelectric properties of mechanically activated (Pb0.92La0.08)(Zr0.60Ti0.40)O3 ceramics. J Mater Sci: Mater Electron 26, 3757–3765 (2015). https://doi.org/10.1007/s10854-015-2899-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2899-1

Keywords

Navigation