Skip to main content
Log in

Complex impedance spectroscopy of high-k HfO2 thin films in Al/HfO2/Si capacitor for gate oxide applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The dielectric responses of ultrathin (~6.65 nm) HfO2 films, in the form of Al/HfO2/Si capacitors were prepared by rf sputtering technique, has been studied in the wide frequency range as a function of deposition temperatures. Deposition temperatures were varied from room temperature (30 °C) to 500 °C. Thickness and the interfacial and surface roughness of heterostructures were extracted by fitting the specular X-ray reflectivity data. The impedance analysis combined with modulus spectroscopy was performed to get insight of the microscopic features like grain, grain boundary and film–electrode interfaces and their effects in the film properties. The films exhibited maximum frequency dispersion in both real and imaginary part of impedance at low frequency range. The frequency analysis of the modulus and impedance studies showed the distribution of the relaxation times due to the presence of grains and grain boundaries in the films. Impedance analysis revealed that the interfacial polarization caused by space charges in the film/electrode interfaces plays an important role in the dielectric behavior of the capacitor. In order to explain effectively that the impedance plots contain one or two arcs due to more than one relaxation contributions, the results are interpreted using the approach proposed by Abrantes (Z / vs. |Z //|/f representation). The dielectric loss (tan δ) curves exhibited the fact that there is possibility of existence of a Schottky barrier at the insulator semiconductor interface, which is due to traps distributed throughout the semiconductor-insulator interface and it is believed to be due to auto doping during deposition process. The ac conductivity, σ ac (ω), varies as σ ac (ω) =  n with n in the range 0.06–0.71.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G.D. Wilk, R.M. Wallace, J.M. Anthony, J. Appl. Phys. 89, 5243 (2001)

    Article  Google Scholar 

  2. G. Ribes, J. Mitard, M. Denais, S. Bruyere, F. Monsieur, C. Parthasarathy, E. Vincent, G. Ghibaudo, IEEE Trans. Device Mater. Reliab. 5, 5 (2005)

    Article  Google Scholar 

  3. M.L. Green, E.P. Gusev, R. Degraeve, E.J. Garfunkel, Appl. Phys. Rev. 90, 2057 (2001)

    Article  Google Scholar 

  4. J. Robertson, Eur. Phys. J. Appl. Phys. 28, 265 (2004)

    Article  Google Scholar 

  5. G. He, L. Zhu, Z. Sun, Q. Wan, L. Zhang, Prog. Mater. Sci. 56, 475 (2011)

    Article  Google Scholar 

  6. G. He, B. Deng, Z. Sun, X. Chen, Y. Liu, L. Zhang, Crit. Rev. Solid State Mater. Sci. 38, 235 (2013)

    Article  Google Scholar 

  7. R. M. Wallace, G. Wilk, MRS Bull. 27, 192 (2002)

    Article  Google Scholar 

  8. E.P. Gusev Jr, C. Cabral, M. Copel, C. D’Emic, M. Gribelyuk, Microelectron. Eng. 69, 145 (2003)

    Article  Google Scholar 

  9. D. Wei, T. Hossain, N.Y. Garces, N. Nepal, H.M. Meyer III, M.J. Jr. Kirkham, C.R. Eddy, J.H. Edgara, ECS J. Solid State Sci. Technol. 2(5), 110 (2013)

    Article  Google Scholar 

  10. G. He, X. Chen, Z. Sun, Surf. Sci. Rep. 68, 68 (2013)

    Article  Google Scholar 

  11. D. Wei, T. Hossain, N.Y. Garces, N. Nepal, H.M. Meyer III, M.J. Jr. Kirkham, C.R. Eddy, J.H. Edgara, ECS J. Solid State Sci. Technol. 2(5), N110 (2013)

    Article  Google Scholar 

  12. W.C. Chin, K.Y. Cheong, J. Mater. Sci. Mater. Electron. 22, 1816 (2011)

    Article  Google Scholar 

  13. G. He, L.D. Zhang, M. Liu, Z.Q. Sun, Appl. Phys. Lett. 97, 62908 (2010)

    Article  Google Scholar 

  14. G. He, M. Liu, L.Q. Zhu, M. Chang, Q. Fang, L.D. Zhang, Surf. Sci. 576, 67 (2005)

    Article  Google Scholar 

  15. J. Zhang, Z. Li, H. Zhou, C. Ye, H. Wang, Appl. Surf. Sci. 294, 58 (2014)

    Article  Google Scholar 

  16. C.C. Lung, J.H. Horng, K.S. Chang-Liao, J.T. Jeng, H.Y. Tsai, Solid State Electron 54, 1197 (2010)

    Article  Google Scholar 

  17. D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850 (1989)

    Article  Google Scholar 

  18. D.C. Sinclair, A.R. West, J. Mater. Sci. 29, 6061 (1994)

    Article  Google Scholar 

  19. S. Saha, S.B. Krupanidhi, J. Appl. Phys. 87, 849 (2000)

    Article  Google Scholar 

  20. L.G. Parratt, Phys. Rev. 95, 359 (1954)

    Article  Google Scholar 

  21. N. Ortega, A. Kumar, P. Bhattacharya, S.B. Majumder, R.S. Katiyar, Phys. Rev B 77, 14111 (2008)

    Article  Google Scholar 

  22. J.H. Lee, H. Chou, G.H. Wen, G.H. Hwang, J. Appl. Phys. 107, 23907 (2010)

    Article  Google Scholar 

  23. G.Z. Liu, Can Wang, C.C. Wang, J. Qiu, M. He, J. Xing, K.J. Jin, H.B. Lu, Y.G. Zhen, Appl. Phys. Lett. 92, 122903 (2008)

    Article  Google Scholar 

  24. J.C.C. Abrantes, J.A. Labrincha, J.R. Frade, Mater. Res. Bull. 35, 727 (2000)

    Article  Google Scholar 

  25. B. Das, M.V. Reddy, G.V. Subba Rao, B.V.R. Chowdari, J. Mater. Chem. 21, 1171 (2011)

    Article  Google Scholar 

  26. A.K. Jonscher, Dielectric Relaxation of Solids (Dielectrics Press, Chelsea, 1981)

    Google Scholar 

  27. V.V. Daniel, Dielectric Relaxation (Academic, London, 1967)

    Google Scholar 

  28. A. Tataroğlu, M. Yıldırım, H.M. Baran, Mater. Sci. Semicond. Process. 28, 89 (2014)

    Article  Google Scholar 

  29. O. Pakma, N. Serin, S. Altindal, J. Phys. D Appl. Phys. 41, 215103 (2008)

    Article  Google Scholar 

  30. K. Prabakar, S.K. Narayandass, D. Mangalaraj, Mater. Chem. Phys. 78, 809 (2003)

    Article  Google Scholar 

  31. G.S. Nadkarni, J.G. Simmons, J. Appl. Phys. 47, 1 (1976)

    Article  Google Scholar 

  32. A.K. Johnscher, Nature 267, 673 (1977)

    Article  Google Scholar 

  33. C.K. Suman, J. Yun, S. Kim, D. Lee, C. Lee, Curr. Appl. Phys. 9, 978 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asim Roy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, M., Roy, A. Complex impedance spectroscopy of high-k HfO2 thin films in Al/HfO2/Si capacitor for gate oxide applications. J Mater Sci: Mater Electron 26, 3506–3514 (2015). https://doi.org/10.1007/s10854-015-2862-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2862-1

Keywords

Navigation