Skip to main content
Log in

Synthesis and optical characterization of Pb(Zr0.53Ti0.47)O3 thin films on indium tin oxide/quartz substrates by a simplified sol–gel route

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Pb(Zr0.53Ti0.47)O3 (PZT 53/47) thin films were deposited onto commercial indium tin oxide (ITO)/quartz substrates using a simplified sol–gel acetic-acid route developed at our laboratory. The films were fully crystallized to the perovskite phase with the final surface roughness remaining relatively low (around 2 nm). Optical properties were studied by Fourier-transform infrared spectroscopy (FT-IR) and UV–Vis reflection and transmission spectroscopy. Optical reflection and transmission were applied to determine film thickness, optical constants and energy band gap. A multi-layer oscillator model was assumed, with the film consisting on a bottom ITO-layer, an intermediate dense PZT layer and a top PZT + voids layer. A reasonably good fit was attained with the selected model. Hysteresis loops and ferroelectric fatigue confirmed that substitution of platinum by ITO as bottom electrode improves the ferroelectric behavior and maintains a reasonably good fatigue resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W. Zhu, R.W. Vest, M.S. Tse, M.K. Rao, Z.Q. Liu, J. Mater. Sci.: Mater. Electron. 5, 173 (1994)

    Google Scholar 

  2. G.L. Smith, J.S. Pulskamp, L.M. Sanchez, D.M. Potrepka, R.M. Proie, T.G. Ivanov, R.Q. Rudy, W.D. Nothwang, S.S. Bedair, C.D. Meyer, R.G. Polcawich, J. Am. Ceram. Soc. 95, 1777 (2012)

    Article  Google Scholar 

  3. D. Isarakorn, A. Sambri, P. Janphuang, D. Briand, S. Gariglio, J.-M. Triscone, F. Guy, J.W. Reiner, C.H. Ahn, N.F. de Rooij, J. Micromech. Microeng. 20, 055008 (2010)

    Article  Google Scholar 

  4. N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N.Y. Park, G.B. Stephenson, I. Stolitchnov, A.K. Taganstev, D.V. Taylor, T. Yamada, S. Streiffer, J. Appl. Phys. 100, 051606 (2006)

    Article  Google Scholar 

  5. K. Suu, in Advances in Ferroelectricity, ed. by A. Peláiz Barranco (InTech, 2012), p. 369

  6. B. Zhu, N.Y. Chan, J. Dai, K.K. Shung, S. Tekeuchi, Q. Zhou, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 854 (2013)

    Article  Google Scholar 

  7. Y. Cao, G. Sheng, J.X. Zhang, S. Choudhury, Y.L. Li, C.A. Randall, L.Q. Chen, Appl. Phys. Lett. 97, 252904 (2010)

    Article  Google Scholar 

  8. M.P. Moret, M.A.C. Devillers, K. Wörhoff, P.K. Larsen, J. Appl. Phys. 92, 468 (2002)

    Article  Google Scholar 

  9. K.P. Jayadevan, T.Y. Tseng, J. Mater. Sci. Electron. 13, 439 (2002)

    Article  Google Scholar 

  10. S. Marino, M. Castriota, G. Strangi, E. Cazzanelli, N. Scaramuzza, J. Appl. Phys. 102, 013112 (2007)

    Article  Google Scholar 

  11. Z. Hu, Z. Huang, Z. Lai, G. Wang, J. Chu, Thin Solid Films 437, 223 (2003)

    Article  Google Scholar 

  12. I. Aulika, S. Corkovic, A. Bencan, S. D’Astorg, A. Dejneka, Q. Zhang, M. Kosec, V. Zauls, J. Electrochem. Soc. 156, G217 (2009)

    Article  Google Scholar 

  13. D. Franta, I. Ohlídal, J. Mistrík, T. Yamaguchi, G.J. Hu, N. Dai, Appl. Surf. Sci. 244, 338 (2005)

    Article  Google Scholar 

  14. Y.P. Jiang, X.G. Tang, Q.X. Liu, Q. Li, A.L. Ding, Mater. Sci. Eng. B. 137, 304 (2007)

    Article  Google Scholar 

  15. S.K. Pandey, A.R. James, R. Raman, S.N. Chatterjee, A. Goyal, C. Prakash, T.C. Goel, Phys. B 369, 135 (2005)

    Article  Google Scholar 

  16. R. Mayén-Mondragón, J.M. Yánez-Limón, K.M. Moya-Canul, A. Herrera-Gomez, M. Vazquez-Lepe, F. Espinoza-Beltrán, A.M. López Beltrán, J. Mater. Sci.: Mater. Electron. 24, 1981 (2013)

    Google Scholar 

  17. M.C. Rodríguez-Aranda, F. Calderón-Piñar, F.J. Espinoza-Beltrán, F.J. Flores-Ruiz, E. León-Sarabia, R. Mayén-Mondragón, J.M. Yáñez-Limón, J. Mater. Sci.: Mater. Electron. 25, 4806 (2014)

    Google Scholar 

  18. L. Lutterotti, S. Gialanella, Acta Mater. 46, 101 (1998)

    Article  Google Scholar 

  19. E.B. Araújo, E.C. Lima, J.D.S. Guerra, A.O. dos Santos, L.P. Cardoso, M.U. Kleinke, J. Phys.: Condens. Matter 20, 415203 (2008)

    Google Scholar 

  20. L.A. Reznichenko, L.A. Shilkina, O.N. Razumovskaya, E.A. Yaroslavtseva, S.I. Dudkina, O.A. Demchenko, Y.I. Yurasov, A.A. Esis, I.N. Andryushina, Phys. Solid State 51, 1010 (2009)

    Article  Google Scholar 

  21. F.M. Pontes, E.R. Leite, M.S.J. Nunes, D.S.L. Pontes, E. Longo, R. Magnani, P.S. Pizani, J.A. Varela, J. Eur. Ceram. Soc. 24, 2969 (2004)

    Article  Google Scholar 

  22. P. Verardi, M. Dinescu, F. Craciun, Appl. Surf. Sci. 154–155, 514 (2000)

    Article  Google Scholar 

  23. D. Bao, H. Yang, L. Zhang, X. Yao, Phys. Status Sol. 169, 227 (1998)

    Article  Google Scholar 

  24. S. Yang, D. Mo, X. Tang, J. Mater. Sci. 37, 3841 (2002)

    Article  Google Scholar 

  25. D. Garoli, M. Natali, V. Rigato, F. Romanato, J. Vac. Sci. Technol. A. 30, 051512 (2012)

    Article  Google Scholar 

  26. N. Tohge, Y. Fukuda, T. Minami, Jpn. J. Appl. Phys. 31, 4016 (1992)

    Article  Google Scholar 

  27. V. Srikant, D.R. Clarke, J. Appl. Phys. 81, 6357 (1997)

    Article  Google Scholar 

  28. S. Trolier-McKinstry, H. Hu, S.B. Krupanidhi, P. Chindaudom, K. Vedam, R.E. Newnham, Thin Solid Films 230, 15 (1993)

    Article  Google Scholar 

  29. M. Bell, P.C. Knight, G.R. Johnston, in Ferroelectric Thin Films: Synthesis and Basic Properties. Ferroelectricity and Related Phenomena, vol. 10, ed. by C.A. Paz de Araujo, J.F. Scott, G.W. Taylor (Gordon and Breach Publishers, 1996), p. 120

  30. M.T. Escote, F.M. Pontes, E.R. Leite, E. Longo, R.F. Jardim, P.S. Pizani, J. Appl. Phys. 96, 2186 (2004)

    Article  Google Scholar 

  31. R. Fernández García, Preparación Y Propiedades de Láminas Ultradelgadas Policristalinas Ferroeléctricas de PbTiO3, Ph.D. Thesis, Autonomous University of Madrid, 2010

  32. K. Yamakawa, Mater. Lett. 28, 317 (1996)

    Article  Google Scholar 

  33. I. Kanno, H. Kotera, K. Wasa, T. Matsunaga, T. Kamada, R. Takayama, J. Appl. Phys. 93, 4091 (2003)

    Article  Google Scholar 

  34. A.K. Tagantsev, I. Stolichnov, E.L. Colla, N. Setter, J. Appl. Phys. 90, 1387 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Ing. Eleazar Urbina, and M. C. Araceli Mauricio for their technical assistance. To Conacyt for the financial support in the project CB-2007-82843, the infrastructure facilities of (LIDTRA) Lab-2009-01-123630 and the economical support of Dra. Ma. Del Carmen Rodríguez in the national postdoctoral program. F. Calderon Piñar is grateful to Cinvestav, for his sabbatical stay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Yáñez-Limón.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Aranda, M.C., Calderón-Piñar, F., Mayén-Mondragón, R. et al. Synthesis and optical characterization of Pb(Zr0.53Ti0.47)O3 thin films on indium tin oxide/quartz substrates by a simplified sol–gel route. J Mater Sci: Mater Electron 26, 3486–3492 (2015). https://doi.org/10.1007/s10854-015-2859-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2859-9

Keywords

Navigation