Skip to main content
Log in

Temperature effect on electrochemical properties of Ti4O7 electrodes prepared by spark plasma sintering

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, Magnéli phase Ti4O7 powders were successfully synthesized and used to fabricate high quality Ti4O7 electrodes by the spark plasma sintering (SPS) technique. The micro-structure, conductivity and electrochemical properties of the Ti4O7 electrode were investigated respectively. Furthermore, temperature’s effect on the electrochemical properties of Ti4O7 working electrode was studied by the cyclic voltammetry measurements under strong sulfuric acid and alkaline conditions at different temperature to simulate actual operating temperature in various electrolyte such as in lead–acid or zinc–air batteries. The results showed that Ti4O7 electrodes prepared by SPS without doping of adhesives had high conductivity, favorable electrochemical activities in function of temperature and electrochemical stability under strong sulfuric acid and alkaline conditions. It would be feasible candidate to bipolar lead–acid battery and used as air cathodes in zinc–air batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Magneli, S. Andersson, B. Collen, U. Kuylenstierna, Phase analysis studies on the titanium oxygen system. Acta Chem. Scand. 11, 1641 (1957)

    Article  Google Scholar 

  2. W.Q. Han, Y. Zhang, Magnéli phases TinO2n−1 nanowires: formation, optical, and transport properties. Appl. Phys. Lett. 92, 203117 (2008)

    Article  Google Scholar 

  3. J.R. Smith, F.C. Walsh, R.L. Clarke, Electrodes based on Magnéli phase titanium oxides: the properties and applications of Ebonex® materials. J. Appl. Electrochem. 28, 1021–1033 (1998)

    Article  Google Scholar 

  4. F.C. Walsh, R.G.A. Wills, The continuing development of Magnéli phase titanium sub-oxides and Ebonex® electrodes. Electrochim. Acta 55, 6342–6351 (2010)

    Article  Google Scholar 

  5. D. Regonini, V. Adamaki, C.R. Bowen, S.R. Pennock, J. Taylor, A.C.E. Dent, AC electrical properties of TiO2 and Magnéli phase, TinO2n−1. Solid State Ionics 229, 38–44 (2012)

    Article  Google Scholar 

  6. R.F. Bartholomew, D.R. Frankl, Electrical properties of some titanium oxides. Phys. Rev. 187, 828 (1969)

    Article  Google Scholar 

  7. R.C. West (ed.), CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 1987), p. F-122

    Google Scholar 

  8. C. Acha, M. Monteverde, M. Nunez-Regueiro, A. Kuhn, M.A. Alario, Franco, electrical resisitivity of the Ti4O7 Magneli phase under high pressure. Eur. Phys. J. B 34, 421–428 (2003)

    Article  Google Scholar 

  9. J.E. Graves, D. Pletcher, R.L. Clarke, F.C. Walsh, The electrochemistry of Magnéli phase titanium oxide ceramic electrodes: part I. The deposition and properties of metal coatings. J. Appl. Electrochem. 21, 848 (1991)

    Article  Google Scholar 

  10. E.E. Farndon, D. Pletcher, Studies of platinized Ebonex® electrodes. Electrochim. Acta 42, 1281 (1997)

    Article  Google Scholar 

  11. W.-H. Kao, P. Patel, S.L. Haberichter, Formation enhancement of a lead/acid battery positive plate by barium metaplumbate and Ebonex®. J. Electrochem. Soc. 144, 1907 (1997)

    Article  Google Scholar 

  12. E.E. Farndon, D. Pletcher, The electro-deposition of platinum onto a conducting ceramic, Ebonex®. Electrochim. Acta 42, 1269 (1997)

    Article  Google Scholar 

  13. O.I. Kasian, T.V. Luk’yanenko, P. Demchenko, R.E. Gladyshevskii, R. Amadelli, A.B. Velichenko, Electrochemical properties of thermally treated platinized Ebonex® with low content of Pt. Electrochem. Acta 109, 630–637 (2013)

    Article  Google Scholar 

  14. D. Bejan, J.D. Malcolm, L. Morrison et al., Mechanistic investigation of the conductive ceramic Ebonex as an anode material. Electrochim. Acta 54(23), 5548–5556 (2009)

    Article  Google Scholar 

  15. T.B. Do, M. Cai, M.S. Ruthkosky, T.E. Moylan, Niobium-doped titanium oxide for fuel cell application. Electrochim. Acta 55, 8013–8017 (2010)

    Article  Google Scholar 

  16. P. Krishnan, S.G. Adavani, A.K. Prasad, Magneli phase TinO2n−1 as corrosion–resistant PEM fuel cell catalyst support. J. Solid State Electrochem. 16, 2515–2521 (2012)

    Article  Google Scholar 

  17. D. Bejan, E. Guinea, N.J. Bunce, On the nature of the hydrogxyl radicals produced at boron-doped diamond and Ebonex® anodes. Electrochim. Acta 69, 275 (2012)

    Article  Google Scholar 

  18. T. Ioroi, Z. Siroma, N. Fujiwara, S. Yamazaki, K. Yasuda, Sub-stochiometric titanium oxide-supported platinum electro-catalyst for polymer electrolyte fuel cells. Electrochem. Commun. 7, 183–188 (2005)

    Article  Google Scholar 

  19. D. Bejan, J.D. Malcolm, L. Morrison, N.J. Bunce, Mechanistic investigation of the conductive ceramic Ebonex® as an anode material. Electrochim. Acta 54, 5548–5556 (2009)

    Article  Google Scholar 

  20. K. Ellis, A. Hill, J. Hill, A. Loyns, T. Partington, The performance of Ebonex® electrodes in bipolar lead–acid batteries. J. Power Sources 136, 366–371 (2004)

    Article  Google Scholar 

  21. A.C. Loyns, A. Hill, K.G. Ellis, T.J. Partington, J.M. Hill, Bipolar batteries based on Ebonex® technology. J. Powder Sources 144, 329–337 (2005)

    Article  Google Scholar 

  22. L. Xiaoxia, L.Z. Aaron, Q. Wei, W. Haijiang, H. Rob, Z. Lei, Z. Jiujun, Magneli phase Ti4O7 electrode for oxygen reduction reaction and its implication for zinc–air rechargeable batteries. Electrochim. Acta 55, 5891–5898 (2010)

    Article  Google Scholar 

  23. A.A. Pesaran, Battery thermal models for hybrid vehicle simulations. J. Power Sources 110, 377–382 (2002)

    Article  Google Scholar 

  24. K.C. Divya, J. Østergaard, Battery energy storage technology for power systems—an overview. Electr. Power Syst. Res. 79, 511–520 (2009)

    Article  Google Scholar 

  25. R. Zhu, Y. Liu, J. Ye, X. Zhang, Magnéli phase Ti4O7 powder from carbothermal reduction method: formation, conductive and optical property. J. Mater. Sci. Mater. Electron. 24, 4853–4856 (2013)

    Article  Google Scholar 

  26. X. Zhang, Y. Liu, J. Ye, R. Zhu, Fabrication of Ti4O7 electrodes by spark plasma sintering. Mater. Lett. 114, 34–36 (2014)

    Article  Google Scholar 

  27. O. Kasian, T. Luk’yanenko, A. Velichenko et al., Electrochemical Behavior of Platinized Ebonex® Electrodes. Int. J. Electrochem. Sci. 7, 7915–7926 (2012)

    Google Scholar 

  28. A. Doner, R. Solmaz, G. Kardas, Int. J. Hydrog. Energy 36, 7391 (2001)

    Article  Google Scholar 

  29. B. Hammer, J.K. Nørskov, Electronic factors determining the reactivity of metal surfaces. Surf. Sci. 343(3), 211–220 (1995)

    Article  Google Scholar 

  30. Z. Tang, L. Liao, Y. Zheng et al., Temperature effect on hydrogen evolution reaction at Au electrode. Chin. J. Chem. Phys. 25(4), 469–474 (2012)

    Article  Google Scholar 

  31. Q. Dong, S. Santhanagopalan, R.E. White, Simulation of polarization curves for oxygen reduction reaction in 0.5 m H2SO4 at a rotating ring disk electrode. J. Electrochem. Soc. 154(8), A816–A825 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51104103) and the Panzhihua City Science Research Programme of China (No. 2012CYG16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, J., Wang, G., Li, X. et al. Temperature effect on electrochemical properties of Ti4O7 electrodes prepared by spark plasma sintering. J Mater Sci: Mater Electron 26, 4683–4690 (2015). https://doi.org/10.1007/s10854-015-2838-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2838-1

Keywords

Navigation