Skip to main content
Log in

Microstructure, optical and photoelectron-chemical properties of TiO2 microspheres prepared by hydrothermal method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Anatase TiO2 microspheres have been prepared by hydrothermal method and the reaction concentrations of mix solution containing hydrofluoric acid (HF) and ammonium fluoride (NH4F) are 0.1, 0.2, and 0.4 M, respectively. Microstructure, morphology, chemical composition, optical and photoelectron-chemical properties of the as-deposited thin films were investigated in detail. XRD analysis shows that the grain size of the microspheres increases with increasing the reaction concentration. The films deposited at 0.1 and 0.2 M are formed by wellfaceted, regular microspheres with the size of 2–3 μm. XPS measurement indicates that the atomic ratio of Ti:O is estimated to be 1:2.05 for the sample deposited at 0.2 M. The band gap is close to the standard values of anatase TiO2 3.2 eV as the reaction concentration increases. The photocurrent of TiO2 film deposited for 0.1 M reaction concentration is around three times as strong as those for 0.2 and 0.4 M under the same illumination. Current results will help to synthesise desired TiO2 films and expand its applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E.J.W. Crossland, N. Noel, V. Sivaram, T. Leijtens, J.A. Alexander-Webber, H.J. Snaith, Nature 495, 215–219 (2013)

    Article  Google Scholar 

  2. D.V. Bavykin, L. Passoni, F.C. Walsh, Chem. Commun. 49, 7007–7009 (2013)

    Article  Google Scholar 

  3. S.-Y. Luo, B.-X. Yan, J. Shen, ACS Appl. Mater. Interface 6, 8942–8946 (2014)

    Article  Google Scholar 

  4. Z. Wang, X. Song, B. Wang, X. Tian, C. Hao, K. Chen, Chem. Eng. J. 256, 268–279 (2014)

    Article  Google Scholar 

  5. Q. Luo, Q. Cai, X. Li, X. Chen, J. Alloy Compd. 597, 101–109 (2014)

    Article  Google Scholar 

  6. W. Li, F. Wang, S. Feng, J. Wang, Z. Sun, B. Li, Y. Li, J. Yang, A.A. Elzatahry, Y. Xia, D. Zhao, J. Am. Chem. Soc. 135, 18300–18303 (2013)

    Article  Google Scholar 

  7. H. Mamane, I. Horovitz, L. Lozzi, D.D. Camillo, D. Avisar, Chem. Eng. J. 257, 159–169 (2014)

    Article  Google Scholar 

  8. X. Wang, G. Wu, B. Zhou, J. Shen, Materials 6, 2819–2830 (2013)

    Article  Google Scholar 

  9. J. Jaćimović, R. Gaál, A. Magrez, L. Forró, M. Regmi, G. Eres, Appl. Phys. Lett. 102, 172108-1–172108-4 (2013)

    Google Scholar 

  10. T. Luttrell, S. Halpegamage, E. Sutter, M. Batzill, Thin Solid Films 564, 146–155 (2014)

    Article  Google Scholar 

  11. J.-Y. Zheng, S.-H. Bao, Y. Guo, P. Jin, ACS Appl. Mater. Interface 6, 5940–5946 (2014)

    Article  Google Scholar 

  12. A. Calloni, A. Ferrari, A. Brambilla, F. Ciccacci, L. Duò, Thin Solid Films 520, 3922–3926 (2012)

    Article  Google Scholar 

  13. Y.J. Hwang, C. Hahn, B. Liu, P. Yang, ACS Nano 6, 5060–5069 (2012)

    Article  Google Scholar 

  14. Y.-C. Liang, C.-C. Wang, C.-C. Kei, Y.-C. Hsueh, W.-H. Cho, T.-P. Perng, J. Phys. Chem. C 115, 9498–9502 (2011)

    Article  Google Scholar 

  15. L.A. Patil, D.N. Suryawanshi, I.G. Pathan, D.M. Patil, Sens. Actuator B Chem. 176, 514–521 (2013)

    Article  Google Scholar 

  16. H.M.N. Bandara, R.M.G. Rajapakse, K. Murakami, G.R.R.A. Kumara, G.A. Sepalage, Electrochim. Acta 56, 9159–9161 (2011)

    Article  Google Scholar 

  17. C. Jiang, W.L. Koh, M.Y. Leung, W. Hong, Y. Li, J. Zhang, J. Solid State Chem. 198, 197–202 (2013)

    Article  Google Scholar 

  18. T. Frade, M.E.M. Jorge, B. Fernández, R. Pereiro, A. Gomes, J. Electrochem. Soc. 161, D125–D133 (2014)

    Article  Google Scholar 

  19. K.R. Reyes-Gil, D.B. Robinson, ACS Appl. Mater. Interface 5, 12400–12410 (2013)

    Article  Google Scholar 

  20. S.A. Berhe, S. Nag, Z. Molinets, W.J. Youngblood, ACS Appl. Mater. Interface 5, 1181–1185 (2013)

    Article  Google Scholar 

  21. P. Chen, J.-D. Peng, C.-H. Liao, P.-S. Shen, P.-L. Kuo, J. Nanopart. Res. 15, 1465-1–1465-11 (2013)

    Google Scholar 

  22. W. Liu, Z. Feng, W. Cao, Res. Chem. Intermed. 39, 1623–1631 (2013)

    Article  Google Scholar 

  23. P. Qiang, Z. Chen, P. Yang, X. Cai, S. Tan, P. Liu, W. Mai, Nanotechnology 24, 435403-1–435403-6 (2013)

    Article  Google Scholar 

  24. A.E. Shalan, M.M. Rashad, Y. Yu, M. Lira-Cantú, M.S.A. Abdel-Mottaleb, Appl. Phys. A Mater. 110, 111–122 (2013)

    Article  Google Scholar 

  25. Y.-C. Pu, G. Wang, K.-D. Chang, Y. Ling, Y.-K. Lin, B.C. Fitzmorris, C.-M. Liu, X. Lu, Y. Tong, J.Z. Zhang, Y.-J. Hsu, Y. Li, Nano Lett. 13, 3817–3823 (2013)

    Article  Google Scholar 

  26. C. Cao, G. Zhang, X. Song, Z. Sun, J. Electrochem. Soc. 158, E8–E11 (2011)

    Article  Google Scholar 

  27. M.-J. Jeng, Y.I.-L. Wung, L.-B. Chang, L. Chow, Int. J. Photoenergy 2013, 280253-1–280253-8 (2013)

    Google Scholar 

  28. Q. Xiang, J. Yu, M. Jaroniec, Chem. Commun. 47, 4532–4534 (2011)

    Article  Google Scholar 

  29. C. Wang, X. Zhang, Y. Zhang, Y. Jia, J. Yang, P. Sun, Y. Liu, J. Phys. Chem. C 115, 22276–22285 (2011)

    Article  Google Scholar 

  30. J.-Z. Chen, W.-Y. Ko, Y.-C. Yen, P.-H. Chen, K.-J. Lin, ACS Nano 6, 6633–6639 (2012)

    Article  Google Scholar 

  31. M. Zhang, M. Zhang, S. Shi, X. Song, Z. Sun, J. Alloys Compd. 591, 213–217 (2014)

    Article  Google Scholar 

  32. J.H. Im, S.J. Yang, C.H. Yun, C.R. Park, Nanotechnology 23, 035604-1–035604-10 (2012)

    Article  Google Scholar 

  33. R.M. O’Donnell, R.N. Sampaio, T.J. Barr, G.J. Meyer, J. Phys. Chem. C 118, 16976–16986 (2014)

    Article  Google Scholar 

  34. V. Diesen, C.W. Dunnill, J.C. Bear, S. Firth, M. Jonsson, I.P. Parkin, Chem. Vapor Depos. 20, 91–97 (2014)

    Article  Google Scholar 

  35. R. Peng, F. Yang, X. Ouyang, Y. Liu, Y.-S. Kim, Z. Ge, Appl. Phys. A Mater. 114, 429–434 (2014)

    Article  Google Scholar 

  36. I. Alessandri, J. Am. Chem. Soc. 135, 5541–5544 (2013)

    Article  Google Scholar 

  37. R. Sellappan, J. Sun, A. Galeckas, N. Lindvall, A. Yurgens, A.Y. Kuznetsov, D. Chakarov, Phys. Chem. Chem. Phys. 15, 15528–15537 (2013)

    Article  Google Scholar 

  38. C. Cao, C. Hu, W. Shen, S. Wang, H. Liu, J. Wang, Sci. Adv. Mater. 5, 1256–1263 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Nos. 51272001 and 51472003), National Key Basic Research Program (2013CB632705), the National Science Research Foundation for Scholars Return from Overseas, Ministry of Education, China, Science Foundation for The Excellent Youth Talents of Chuzhou University (2013RC007), Research Project of Chuzhou University (2014KJ01) and Innovation Entrepreneurship Training Program for College Students of Chuzhou University (2014CXXL036). The authors would like to thank Zhongqing Lin of the Experimental Technology Center of Anhui University, for electron microscope test and discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xishun Jiang or Zhaoqi Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Zhang, Y., Li, Z. et al. Microstructure, optical and photoelectron-chemical properties of TiO2 microspheres prepared by hydrothermal method. J Mater Sci: Mater Electron 26, 2070–2075 (2015). https://doi.org/10.1007/s10854-014-2649-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2649-9

Keywords

Navigation