Skip to main content

Advertisement

Log in

A facile low temperature synthesis of TiO2 nanorods for high efficiency dye sensitized solar cells

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Titania (TiO2) nanorods have been synthesized with controlled size for dye-sensitized solar cells (DSSCs) via hydrothermal route at low hydrothermal temperature of 100 °C for 24 h. The titania nanorods were characterized using XRD, SEM, TEM/HRTEM, UV-vis Spectroscopy, FTIR and BET specific surface area (S BET), as well as pore-size distribution by BJH. The results indicated that the bulk traps and the surface states within the TiO2 nanorods films have enhanced the efficiency of DSSCs. The size of the titania nanorods was 6.7 nm in width and 22 nm in length. The high surface area can provide more sites for dye adsorption, while the fast photoelectron-transfer channel can enhance the photogenerated electron transfer to complete the circuit. The specific surface area S BET was 77.14 m2 g−1 at the synthesis conditions. However, the band gap energy of the obtained titania nanorods was 3.2 eV. The oriented nanorods with appropriate lengths are beneficial in improving the electron transport property and thus leading to the increase of photocurrent, together enhancing the power conversion efficiency. A nearly quantitative absorbed photon-to-electrical current conversion achieved upon excitation at wave length of 550 nm and the power efficiency was enhanced from 5.6 % for commercial TiO2 nanoparticles Degussa (P25) cells to 7.2 % for TiO2 nanorods cells under AM 1.5 illumination (100 mW cm−2). The TiO2 cells performance was improved due to their high surface area, hierarchically mesoporous structures and fast electron-transfer rate compared with the Degussa (P25).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T. Tachikawa, M. Fujitsuka, T. Majima, Influences of adsorption on TiO2 photocatalytic one-electron oxidation of aromatic sulfides studied by time-resolved diffuse reflectance spectroscopy. J. Phys. Chem. C 111, 5259 (2007)

    Article  Google Scholar 

  2. G.J. Wilson, G.D. Will, R.L. Frost, S.A. Montgomery, Efficient microwave hydrothermal preparation of nanocrystalline anatase TiO2 colloids. J. Mater. Chem. 12, 1787 (2002)

    Article  Google Scholar 

  3. H. Wang, T. Wang, P. Xu, Effects of substrate temperature on the microstructure and photocatalytic reactivity of TiO2 films. J. Mater. Sci., Mater. Electron. 9, 327 (1998)

    Google Scholar 

  4. I. Gonzalez-Valls, M. Lira-Cantu, Dye sensitized solar cells based on vertically-aligned ZnO nanorods: effect of UV light on power conversion efficiency and lifetime. Energy Environ. Sci. 3, 789 (2010)

    Article  Google Scholar 

  5. Y. Saito, S. Kambe, T. Kitamura, Y. Wada, S. Yanagida, Morphology control of mesoporous TiO2 nanocrystalline films for performance of dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 83, 1 (2004)

    Article  Google Scholar 

  6. M. Grätzel, Corrigendum to “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells”. J. Photochem. Photobiol. A, Chem. 168, 235 (2004)

    Article  Google Scholar 

  7. L. Gonzalez-G., I. Gonzalez-V., M. Lira-Cantu, A. Barrancoa, A.R. Gonzalez-E., Aligned TiO2 nanocolumnar layers prepared by PVD-GLAD for transparent dye sensitized solar cells. Energy Environ. Sci. 4, 3426 (2011)

    Article  Google Scholar 

  8. M. Adachi, Y. Murata, I. Okada, S. Yoshikawa, Formation of titania nanotubes and applications for dye-sensitized solar cells. J. Electrochem. Soc. 150, 488 (2003)

    Article  Google Scholar 

  9. K. Gopal, M. Karthik Shankar, P. Maggie, O.K. Varghese, C.A. Grimes, Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett. 6, 215 (2006)

    Article  ADS  Google Scholar 

  10. M. Adachi, Y. Murata, J. Takao, J.T. Jiu, M. Sakamoto, F.M. Wang, Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the “oriented attachment” mechanism. J. Am. Chem. Soc. 126, 14943 (2004)

    Article  Google Scholar 

  11. S. Pavasupree, S. Ngamsinlapasathian, M. Nakajima, Y. Suzuki, S. Yoshikawa, Hydrothermal synthesis, characterization, photocatalytic activity and dye-sensitized solar cell performance of mesoporous anatase TiO2 nanopowders. J. Photochem. Photobiol. A, Chem. 163, 184 (2006)

    Google Scholar 

  12. A. Chemseddine, H. Jungblut, S. Boulmaaz, Investigation of the nanocluster self-assembly process by scanning tunneling microscopy and optical spectroscopy. J. Phys. Chem. 100, 12546 (1996)

    Article  Google Scholar 

  13. R.L. Whetten, J.T. Khoury, M.M. Alvarez, S. Murthy, I. Vezmar, Z.L. Wang, P.W. Stephens, C.L. Cleveland, W.D. Luedtke, U. Landman, Transient photocurrent and photovoltage studies on charge transport in dye sensitized solar cells made from the composites of TiO2 nanofibers and nanoparticles. Adv. Mater. 8, 428 (1995)

    Article  Google Scholar 

  14. E. Hosono, S. Fujihara, K. Kakiuchi, H. Imai, Growth of sub-micrometer-scale rectangular parallelepiped rutile TiO2 films in aqueous TiCl3 solutions under hydrothermal conditions. J. Am. Chem. Soc. 126, 7790 (2004)

    Article  Google Scholar 

  15. T. Peng, D. Zhao, K. Dai, W. Shi, K. Hirao, Synthesis of titanium dioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity. J. Phys. Chem. B 109, 4947 (2005)

    Article  Google Scholar 

  16. E.A. Barringer, H.K. Bowen, High-purity, monodisperse TiO2 powders by hydrolysis of titanium tetraethoxide. Langmuir 1, 414 (1985)

    Article  Google Scholar 

  17. M.M. Rashad, A.E. Shalan, Synthesis and optical properties of titania–PVA nanocomposites. Int. J. Nanopart. 5, 159 (2012)

    Article  Google Scholar 

  18. S. Asal, M. Saif, H. Hafez, S. Mozia, A. Heiak, D. Moszyrisko, M.S.A. Abdel-Mottaleb, Photocatalytic generation of useful hydrocarbons and hydrogen from acetic acid in the presence of lanthanide modified TiO2. Int. J. Hydrog. Energy (2011). doi:10.1016/j.ijhydene.2011.02.066

    Google Scholar 

  19. W. Kongsuebchart, P. Praserthdam, J. Panpranot, A. Sirisuk, P. Supphasrirongjaroen, C. Satayaprasert, Effect of crystallite size on the surface defect of nano-TiO2 prepared via solvothermal synthesis. J. Cryst. Growth 297, 234 (2006)

    Article  ADS  Google Scholar 

  20. C.C. Tsai, H. Teng, Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments. Chem. Mater. 18, 367 (2006)

    Article  Google Scholar 

  21. Y.V. Kolen’ko, K.A. Kovnir, A.I. Gavrilov, A.V. Garshev, J. Frantti, O.I. Lebedev, B.R. Churagulov, O.G. van Tendeloo, M. Yoshimura, Hydrothermal synthesis and characterization of nanorods of various titanates and titanium dioxide. J. Phys. Chem. B 110, 4030 (2006)

    Article  Google Scholar 

  22. B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991)

    Article  Google Scholar 

  23. F. Sauvage, D.H. Chen, P. Comte, F.Z. Huang, L.P. Heiniger, Y.B. Cheng, R.A. Caruso, M. Grätzel, Dye-sensitized solar cells employing a single film of mesoporous TiO2 beads achieve power conversion efficiencies over 10 %. ACS Nano 4, 4420 (2010)

    Article  Google Scholar 

  24. J.R. Durrant, S.A. Haque, E. Palomares, Towards optimization of electron transfer processes in dye sensitized solar cells. Coord. Chem. Rev. 248(13–14), 1247 (2004).

    Article  Google Scholar 

  25. B.H. Lee, M.Y. Song, S.Y. Jang, S.M. Jo, S.Y. Kwak, D.Y. Kim, Charge transport characterization of high efficiency dye sensitized solar cells based on electrospun TiO2 nanorod photoelectrodes. J. Phys. Chem. C 113, 21453 (2009)

    Article  Google Scholar 

  26. C. Longo, A.F. Nogueira, M.A. De Paoli, H. Cachet, Solid-state and flexible dye-sensitized TiO2 solar cells: a study by electrochemical impedance spectroscopy. J. Phys. Chem. B 106, 5925 (2002)

    Article  Google Scholar 

  27. M. Grätzel, Photoelectrochemical cells. Nature 414, 338 (2001)

    Article  ADS  Google Scholar 

  28. P.K. Khanna, N. Singh, S. Charan, Synthesis of nano-particles of anatase-TiO2 and preparation of its optically transparent film in PVA. Mater. Lett. 61, 4725 (2007)

    Article  Google Scholar 

  29. S.N. Karthick, K. Prabakar, A. Subramania, J.-T. Hong, J.-J. Jang, H.-J. Kim, Preparation, phase transformation and photocatalytic activities of cerium-doped mesoporous titania nanoparticles. Powder Technol. 305, 36 (2011)

    Article  Google Scholar 

  30. T. Peng, D. Zhao, H. Song, C. Yan, Visible light induced photocatalytic activity of rare earth titania nanocomposites. J. Mol. Catal. A, Chem. 238, 119 (2005)

    Article  Google Scholar 

  31. M.M. Rashad, A.E. Shalan, M. Lira-Cantú, M.S.A. Abdel-Mottaleb, Enhancement of TiO2 nanoparticle properties and efficiency of dye-sensitized solar cells using modifiers. Appl. Nanosci. (2012). doi:10.1007/s13204-012-0117-5

    Google Scholar 

  32. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603 (1985)

    Article  Google Scholar 

  33. J.G. Yu, G.H. Wang, B. Cheng, M.H. Zhou, Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders. Appl. Catal. B, Environ. 69, 171 (2007)

    Article  Google Scholar 

  34. M. Saif, M.S.A. Abdel-Mottaleb, Titanium dioxide nanomaterial doped with trivalent lanthanide ions of Tb, Eu and Sm: preparation, characterization and potential applications. Chim. Acta 360, 2863 (2006)

    Google Scholar 

  35. J.G. Yu, L.J. Zhang, B. Cheng, Y.R. Su, Hydrothermal preparation and photocatalytic activity of hierarchically sponge-like macro-/mesoporous titania. J. Phys. Chem. C 111, 10582 (2007)

    Article  Google Scholar 

  36. H. Hafez, M. Saif, M.S.A. Abdel-Mottaleb, Down-converting lanthanide doped TiO2 photoelectrodes for efficiency enhancement of dye-sensitized solar cells. J. Power Sources 196, 5792 (2011)

    Article  Google Scholar 

  37. J. Yu, J. Fana, Z. Li, Dye-sensitized solar cells based on hollow anatase TiO2 spheres prepared by self-transformation method. J. Electrochim. Acta 55, 597 (2010)

    Article  Google Scholar 

  38. K. Fan, W. Zhang, T. Peng, J. Chen, F. Yang, Application of TiO2 fusiform nanorods for dye-sensitized solar cells with significantly improved efficiency. J. Phys. Chem. C 115, 17213 (2011)

    Article  Google Scholar 

  39. Q. Wang, J.-E. Moser, M. Grätzel, Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J. Phys. Chem. B 109, 14945 (2005)

    Article  Google Scholar 

  40. J. Bisquert, Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells. J. Phys. Chem. Chem. Phys. 5, 5360 (2003)

    Google Scholar 

  41. L.Y. Han, N. Koide, Y. Chiba, T. Mitate, Modeling of an equivalent circuit for dye sensitized solar cells. Appl. Phys. Lett. 84, 2433 (2004)

    Article  ADS  Google Scholar 

  42. A. Hauch, A. Georg, Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. Electrochim. Acta 46, 3457 (2001)

    Article  Google Scholar 

  43. L. Qi, Y. Ma, Q. Ouyang, Y. Zhang, L. Li, Y. Chen, The controllable synthesis of chain-like TiO2 networks with multiwalled carbon nanotubes as templates and its application for dye-sensitized solar cells. J. Nanopart. Res. 14, 907 (2012). doi:10.1007/s11051-012-0907-4

    Article  Google Scholar 

  44. F. Fabregat-Santiago, J. Bisquert, E. Palomares, L. Otero, D. Kuang, S.M. Zakeeruddin, M. Grätzel, Correlation between photovoltaic performance and impedance spectroscopy of dye-sensitized solar cells based on ionic liquids. J. Phys. Chem. C 111, 6550–6560 (2007). doi:10.1021/jp066178a

    Article  Google Scholar 

  45. D. Zhao, T. Peng, L. Lu, P. Cai, P. Jiang, Z. Bian, Effect of annealing temperature on the photoelectrochemical properties of dye-sensitized solar cells made with mesoporous TiO2 nanoparticles. J. Phys. Chem. C 112, 8486–8494 (2008). doi:10.1021/jp800127x

    Article  Google Scholar 

  46. J. Qu, X.P. Gao, G.R. Li, Q.W. Jiang, T.Y. Yan, Structure transformation and photoelectrochemical properties of TiO2 nanomaterials calcined from titanate nanotubes. J. Phys. Chem. C 113, 3359–3363 (2009). doi:10.1021/jp810692t

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Academy of Scientific Research and Technology (ASRT) and Ministry of Scientific Research of Egypt. Ahmed Shalan acknowledges Prof. Monica Lira and her lab in Centre de Investigacio en Nanociencia I Nanotecnologia (Cin2, CSIC), ETSE, Campus UAB, Bellaterra (Barcelona), Spain for their support and helping in pursue part of the experimental section.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Shalan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shalan, A.E., Rashad, M.M., Yu, Y. et al. A facile low temperature synthesis of TiO2 nanorods for high efficiency dye sensitized solar cells. Appl. Phys. A 110, 111–122 (2013). https://doi.org/10.1007/s00339-012-7368-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7368-6

Keywords

Navigation