Skip to main content
Log in

Microstructure and electro-optical properties of Cu–Ni co-doped AZO transparent conducting thin films by sol–gel method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cu–Ni co-doped Zn1−xAlxO (AZO; Al/Zn = 1.5 at.%) films with fixed Ni concentration at 0.5 mol% and different Cu concentrations (0–2.0 % mole ratio) were synthesized on glass substrates using a sol–gel method. The effects of the Cu composition on the structure, electrical and optical properties were examined. X-ray diffraction (XRD) of the Cu–Ni co-doped AZO (CuNi:AZO) films revealed a polycrystalline ZnO phase with a hexagonal wurtzite structure. The stress variation of the CuNi:AZO films were analyzed from the XRD pattern. XPS spectra indicated the existence of two valence states of Cu atoms in Cu+ and Cu2+ states after N2/H2 (95/5) forming gas heat treatment for CuNi:AZO films. Scanning electron microscopy showed that all the films were smooth with a good packing density. The particle size was calculated by both XRD and SEM analysis, and the difference between them has been discussed in detail. Hall measurements indicated that the lowest resistivity of the CuNi:AZO film is approximately 1.16 × 10−3 Ω cm at a 1.0 mol% Cu content, which is one order of magnitude lower than that of AZO film (1.01 × 10−3 Ω cm) and 43.9 % lower than that of Ni-doped AZO film (2.07 × 10−3 Ω cm). All the films exhibited high transmittance in the visible region and showed sharp absorption edges in the UV region. The optical band gap shifted from 3.44 to 3.35 eV with increasing Cu content. This study provides a simple and efficient route for preparing low resistivity and high transparency CuNi:AZO films for optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W.C.H. Choy, K.N. Hui, H.H. Fong, Y.J. Liang, P.C. Chui, Thin Solid Films 509, 193 (2006)

    Article  Google Scholar 

  2. H.H. Fong, W.C.H. Choy, K.N. Hui, Y.J. Liang, Appl. Phys. Lett. 88, 113510 (2006)

  3. T. Ganesh, H. M. Nguyen, R. S. Mane, N. Kim, D. V. Shinde, S. S. Bhande, M. Naushad, K. N. Hui S. H. Han, T. Dalton, 43, 11305 (2014)

  4. F.L. Li, E. Wang, X.Y. Ni, J. Mater. Sci. Mater. El. 24, 5048 (2013)

    Article  Google Scholar 

  5. K.N. Hui, K.S. Hui, Q. Xia, T.V. Cuong, Y.R. Cho, J. Singh, P. Kumar, E.J. Kim, ECS. Solid State Lett. 2, Q43 (2013)

    Article  Google Scholar 

  6. B.K. Lee, E. Jung, S.H. Kim, D.C. Moon, S.S. Lee, B.K. Park, J.H. Hwang, T.M. Chung, C.G. Kim, K.S. An, Mater. Res. Bull. 47, 3052 (2012)

    Article  Google Scholar 

  7. Y.K. Zhu, R.J. Mendelsberg, J.Q. Zhu, J.C. Han, A. Anders, Appl. Surf. Sci. 265, 738 (2013)

    Article  Google Scholar 

  8. L. Ren, K.S. Hui, K.N. Hui, J. Mater. Chem. A 1, 5689 (2013)

    Article  Google Scholar 

  9. X.L. Zhang, K.S. Hui, K.N. Hui, Mater. Res. Bull. 48, 305 (2013)

    Article  Google Scholar 

  10. J. Singh, P. Kumar, D.J. Late, T. Singh, M.A. More, D.S. Joag, R.S. Tiwari, K.S. Hui, K.N. Hui, O.N. Srivastava, Dig. J. Nanomater. Bios. 7, 795 (2012)

    Google Scholar 

  11. C. Liu, B.P. Zhang, Z.W. Lu, N.T. Binh, K. Wakatsuki, Y. Segawa, R. Mu, J. Mater. Sci. Mater. El. 20, 197 (2009)

    Article  Google Scholar 

  12. X.L. Zhang, K.N. Hui, K.S. Hui, J. Singh, Mater. Res. Bull. 48, 1093 (2013)

    Article  Google Scholar 

  13. J. Singh, P. Kumar, K.N. Hui, J. Jung, R.S. Tiwari, O.N. Srivasatva, RSC. Adv. 3, 5465 (2013)

    Article  Google Scholar 

  14. G. Neumann, Phys. Status Solidi B Basic Res. 105, 605 (1981)

    Article  Google Scholar 

  15. H. Karaagac, E. Yengel, M.S. Islam, J. Alloy. Compd. 521, 155 (2012)

    Article  Google Scholar 

  16. Y.D. Jo, K.N. Hui, K.S. Hui, Y.R. Cho, K.H. Kim, Mater. Res. Bull. 51, 345 (2014)

    Article  Google Scholar 

  17. J. Lee, K.N. Hui, K.S. Hui, Y.R. Cho, H.H. Chun, Appl. Surf. Sci. 293, 55 (2014)

    Article  Google Scholar 

  18. K.N. Hui, K.S. Hui, L. Li, Y.R. Cho, J. Singh, Mater. Res. Bull. 48, 96 (2013)

    Article  Google Scholar 

  19. G.H. Lee, Thin Solid Films 534, 282 (2013)

    Article  Google Scholar 

  20. J.B. Park, S.H. Park, P.K. Song, J. Phys. Chem. Solids 71, 669 (2010)

    Article  Google Scholar 

  21. J. Zhang, W.X. Que, Sol. Energy Mat. Sol. C 94, 2181 (2010)

    Article  Google Scholar 

  22. Y.K. Tseng, G.J. Gao, S.C. Chien, Thin Solid Films 518, 6259 (2010)

    Article  Google Scholar 

  23. L. Li, K.S. Hui, K.N. Hui, H.W. Park, D.H. Hwang, S. Cho, S.K. Lee, P.K. Song, Y.R. Cho, H. Lee, Y.G. Son, W. Zhou, Mater. Lett. 68, 283 (2012)

    Article  Google Scholar 

  24. H.L. Pan, Y.S. Hu, L.Q. Chen, Energy Environ. Sci. 6, 2338 (2013)

    Article  Google Scholar 

  25. L.G. Ma, S.Y. Ma, H.X. Chen, X.Q. Ai, X.L. Huang, Appl. Surf. Sci. 257, 10036 (2011)

    Article  Google Scholar 

  26. N.Y. Garces, L. Wang, L. Bai, N.C. Giles, L.E. Halliburton, G. Cantwell, Appl. Phys. Lett. 81, 622 (2002)

    Article  Google Scholar 

  27. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294, 1488 (2001)

    Article  Google Scholar 

  28. Q.A. Drmosh, S.G. Rao, Z.H. Yamani, M.A. Gondal, Appl. Surf. Sci. 270, 104 (2013)

    Article  Google Scholar 

  29. A. Singh, D. Kumar, P.K. Khanna, B.C. Joshi, M. Kumar, Appl. Surf. Sci. 258, 1881 (2011)

    Article  Google Scholar 

  30. J.B.J. István Pais Jr., The Handbook of Trace Elements (St. Lucie Press, USA, 1997)

    Google Scholar 

  31. O.A. Yeshchenko, I.M. Dmitruk, A.M. Dmytruk, A.A. Alexeenko, Mat. Sci. Eng. B Solid 137, 247 (2007)

    Article  Google Scholar 

  32. A. Chahadih, H. El Hamzaoui, O. Cristini, L. Bigot, R. Bernard, C. Kinowski, M. Bouazaoui, B. Capoen, Nanoscale Res. Lett. 7, 487 (2012)

  33. G. De, M. Gusso, L. Tapfer, M. Catalano, F. Gonella, G. Mattei, P. Mazzoldi, G. Battaglin, J. Appl. Phys. 80, 6734 (1996)

    Article  Google Scholar 

  34. A.K. Zak, W.H.A. Majid, M.E. Abrishami, R. Yousefi, Solid State Sci. 13, 251 (2011)

    Article  Google Scholar 

  35. G. Li, X.B. Zhu, X.W. Tang, W.H. Song, Z.R. Yang, J.M. Dai, Y.P. Sun, X. Pan, S.Y. Dai, J. Alloy. Compd. 509, 4816 (2011)

    Article  Google Scholar 

  36. L. Chow, O. Lupan, G. Chai, H. Khallaf, L.K. Ono, B.R. Cuenya, I.M. Tiginyanu, V.V. Ursaki, V. Sontea, A. Schulte, Sens. Actuators A Phys. 189, 399 (2013)

    Article  Google Scholar 

  37. T. Ghodselahi, M.A. Vesaghi, A. Shafiekhani, A. Baghizadeh, M. Lameii, Appl. Surf. Sci. 255, 2730 (2008)

    Article  Google Scholar 

  38. T.H. Fleisch, G.J. Mains, Appl. Surf. Sci. 10, 51 (1982)

    Article  Google Scholar 

  39. J.W. Jeon, D.W. Jeon, T. Sahoo, M. Kim, J.H. Baek, J.L. Hoffman, N.S. Kim, I.H. Lee, J. Alloy. Compd. 509, 10062 (2011)

    Article  Google Scholar 

  40. K. Yim, H.W. Kim, C. Lee, Mater. Sci. Tech. Lond. 23, 108 (2007)

    Article  Google Scholar 

  41. H. Wang, M.H. Xu, J.W. Xu, M.F. Ren, L. Yang, J. Mater. Sci. Mater. El. 21, 589 (2010)

    Article  Google Scholar 

  42. J. P. Lin, J. M. Wu, Appl. Phys. Lett. 92 (2008)

  43. M.B.M. Rezaee Rokn-Abadi, H. Arabshahi, N. Hosseini, Int. Rev. Phys. 12, 103 (2009)

    Google Scholar 

  44. G. Singh, S.B. Shrivastava, D. Jain, S. Pandya, T. Shripathi, V. Ganesan, B. Mater. Sci. 33, 581 (2010)

    Article  Google Scholar 

  45. S.W. Shi, G. He, M. Zhang, X.P. Song, J.L. Li, X.X. Wang, J.B. Cui, X.S. Chen, Z.Q. Sun, Sci. Adv. Mater. 4, 193 (2012)

    Article  Google Scholar 

  46. F. Yakuphanoglu, S. Ilican, M. Caglar, Y. Caglar, Superlattices Microstruct. 47, 732 (2010)

    Article  Google Scholar 

  47. B.K. Maryam Bordbar, N. Mollatayefeh, A. Yeganeh-Faal, J. Appl. Chem. 8, 27 (2013)

  48. R.C. Wang, H.Y. Lin, Mater. Chem. Phys. 125, 263 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0023418), and the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) through GCRC-SOP (No. 2011-0030013). In this study, we acknowledge XPS measurements (ESCALAB250 XPS system, Theta Probe XPS system) from KBSI, Busan Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. S. Hui or K. N. Hui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Hui, K.S., Hui, K.N. et al. Microstructure and electro-optical properties of Cu–Ni co-doped AZO transparent conducting thin films by sol–gel method. J Mater Sci: Mater Electron 26, 1151–1158 (2015). https://doi.org/10.1007/s10854-014-2519-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2519-5

Keywords

Navigation